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Abstract

Adaptive Stochastic Resonance Array (ASRA) along with Adaptive Transport Array (ATA) preamplifier modules are
exploited for ambient temperature (non-cryogenic) receiver front end recovery of Ultra Weak narrowband or
wideband wireless signals which are subject to co-channel interference. The ASRA method uses pass band external
additive or injecting signals in a weighted array framework for boosting the ultra weak wireless signal and the ATA
method relies on instantaneous noise power analysis on a weighted array transport paths. The ASRA method is
especially applicable for compact wireless devices such as wireless handsets and sensors, where the facilities for
conventional antennas or Cryogenic setups are not available, but the ATA method requires further investigation before
actual implementation. The preamplifier methods are insensitive to the transmission protocol and modulation scheme
and they do not require extra bandwidth for their operation. The standard signal processing concepts such as mutual
information stochastic resonance quality measures, gradient ascent and stochastic annealing, Kalman filtering and
stochastic calculus have been used for updating the array weights or the injecting signal parameters.

I- Introduction

This presentation focuses on Adaptive Stochastic Resonance Array (ASRA) and Adaptive Transport Array (ATA)
preamplifiers for the detection of ultra weak signals. The ultra weak signals are defined as desired signals that have
receiver power levels below the noise level (floor) and ultra weak signal preamplifiers are employed before the LNAS
at the wireless receiver in order to boost the desired signal power to levels above the noise floor. Section 2 provides a
brief introduction on different ultra weak Signal handling modules. In section 3, a simple mathematics of ultra weak
signal condition is presented, within the framework of traditional modulation format. Section 4 is devoted to Adaptive
Stochastic Resonance Array (ASRA) preamplifier and it covers the architecture, resonance quality measure, weight
and injecting signal controlling parameter update methods and the array performance. Section 5 is allocated to
Adaptive Transport Array (ATA) preamplifier and the section covers the architecture along with the array weight
assignment and cycle operation. Concluding remarks are included in section 6.

Ultra weak or sub threshold wireless signal processing is a fairly new branch in electronic communication and it came
into existence for the fundamental objective of increasing the capacity of wireless users. The signal processing relies
heavily on nano technology and semi ballistic electronic transport mechanism.

In order to increase the capacity of wireless users, the co-channel Signal Source Separation technology was developed
to allow for the co-existence of wireless signals (of the same or different transmission protocols) in the same radio
frequency band without increasing the band width. Moreover, many of the radio bands have been opened up for
unlicensed operation and there is also a desire to increase the transmission distance or relax the line of sight
requirements for microwave and millimeter wave bands.

However, the increase in the number of wireless transmissions with the conventional transmission power levels leads
to wireless r.f. (radio frequency) power overloads. In fact, the standards for adding Source Separation modules to the
wireless sets are subject to resolving the side issue of the r.f. power overloads.

The overload is an environmental health threat which can only be compensated by reduction in wireless transmitter
power. Unfortunately, for a given transmission distance, the power reduction in wireless transmitters leads to
attenuated signals with levels below the noise floor at the receiver. By employing multiple micro-cells and relays in
the transmission path, it is possible to lower the transmitter power of the end users and have normal reception. In this
case, the relays can communicate with other relays by a combination of terrestrial cabling and airway retransmissions.

If the relays use airways for the retransmission of signals, the r.f. power overload would still persist because the same
amount of r.f. power is contributed to the overload. The r.f. power overload can be partially compensated by cabling
and in fact, cabling is encouraged because it provides a redundant backup for portions of wireless networks. However,

-1-



for reliable systems, cabling is not sufficient due to the terrestrial pathways and accessibility problems and a fully
wireless system becomes mandatory in order to retain the reliability. Therefore, we still have to resolve the problem of
detecting the attenuated wireless signals.

The problem of signal detection is compounded by the fact that the compact wireless modules that are used for
personal communication or sensors do not have the necessary antenna power gains that are available to cellular, relay
stations or fixed wireless components. Therefore, considering all of the mentioned factors, the Ultra Weak Signal
Processing is ultimately required for detecting the wireless signals at power levels below the noise floor.

The ultra weak signal processing is basically required for the following reasons:

1- To detect wireless signals that are attenuated at levels below the noise floor due to low transmission
power, long transmission distance, obstructions in indoor environments, etc.

2- To increase the transmission distance for wireless networks that have been traditionally used for short
distances without increasing the transmission power

3- To allow for the deployment of massive wireless sensors and their networks at ambient temperature
conditions

4- To increase the capacity for wireless service by operating in a low r.f. power environment and by
eliminating the r.f. power overload

5- To allow for the inclusion of signal source separation modules in the wireless sets

I1- Ultra Weak Signal Handling Modules or Options for Compact Wireless Sets
1- Nano Antennas

Nanotube antennas can be used to couple the external electromagnetic energy to the receiver front end [1]. They are
extremely critical for the implementation of wireless hand set adaptive antenna array module.

2- Compact Nano Cavity Pre-amplifier

Space charge wave propagation theory of Hahn and Ramo [2],[3] can be employed on nano-cavities in order to
amplify the ultra weak signal from the antenna ports. Each antenna port is connected to a compact nano cavity. In the
cavity, an electron drift space can be set up by a coupled controlling D.C. electric field. By matching the group
velocity of the weak signal field to the drift electron velocity through proper nano-cavity design, the kinetic energy of
the drift electrons can be transferred to the ultra weak r.f. signal, which leads to signal amplification. The amplified r.f.
signal is collected in a Catcher cavity.

Theories and approaches are available for confining and guiding electromagnetic energy through narrow channels with
sub-wavelength transverse cross sections [4],[5]. The near zero £ ENZ materials have interesting potentials in
efficiently squeezing and transmitting energy through narrow sub-wavelength region and effectively providing super-
coupling between ports and/or waveguides. The ENZ materials can be properly synthesized at the desired frequency
by embedding suitable inclusions in a host medium.

Also, Metal-Dielectric-Metal (MDM) structures with a dielectric region thickness of ~100 nm supports a propagating
mode with a nanoscale modal size at a wavelength range extending from zero-frequency (DC) to visible [6].

3- Direct Electronic Noise Reducing Preamplifier

Although at a preliminary research stage, it is possible to reduce the intrinsic noise of the primary conduction path of
the receiver (after the antenna ports) by reducing the electron-electron and electron-phonon scattering. In [7], coupled
guantum dots in phonon cavities have been used to detect phonon quantum size effects in the electron transport. The
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guantum phase of an electron is randomized by inelastic scattering events with other electrons or with lattice
vibrations (phonons). By tuning the dot level splitting via gate voltages, piezo-electric or deformation potential
scattering can be drastically reduced.

4- Stochastic Resonance Preamplifiers

The Stochastic Resonance (SR) pre amplifier can be used for the detection of ultra weak narrowband or wideband
wireless signals at ambient (non-cryogenic) temperature conditions. The sub-threshold signals can be detected at the
receiver front end by externally injecting random signals and / or manipulating the internal noise level of the receiver
front end. The SR methods do not require any extra bandwidth or any modification on the transmission protocol and
they have a high degree of design flexibility for recovering the sub threshold signal.

A SR quality measure between the desired signal(s) and the SR output such as mutual information or normalized cross
correlation is estimated based on either the modulation format or the reference sequences or the retrieved signals from
the Source Separation module. Based on the SR quality measure, the injecting signal probability distribution
parameters or signal formats are adaptively modified in order to increase the SR quality measure. The plot of the SR
quality measure with respect to the adjusting parameter of the additive signal (or signals) resembles a resonance curve
and the peak signifies the optimum operation point or resonance quality measure.[13, 21-31]

5- Adaptive Transport Array Preamplifier

This preamplifier is a recent addition to the ultra weak signal pre amplifier technology. At this primitive stage, it can
not be practically implemented in the compact wireless set and it requires further research for optimizing and reducing
the number of arrays.

Basically, the primary conduction path after the antenna / cavity port is divided into several weighted paths and the
weighted paths are added to form an array. The instantaneous noise power of each path is estimated with respect to the
desired signal power by using the output of the array which is accessible. During each update period, those paths that
have instantaneous noise levels below the signal level will be heavily weighted and the other paths will not be
emphasized. Effectively, the desired signal is captured at all times.

6- Signal Source Separation Modules

The Signal Source Separation (SS) modules [8-12] basically separate the desired signal from interfering signals by
novel methods such as blind source separation which is related to the Independent Component Analysis and mutual
information minimization methods.

The SS technology allows different interfering users to use the same or different transmission protocols in the relevant
common frequency band with out increasing the bandwidth. The SS technology can distinguish signals that have
different modulation format or signals that have the same modulation format but with different transmission protocol.
But for signals that have the same transmission protocol and are not subject to a cellular subscriber assignment, either
intrinsic identifying signal coding / transformation or Reference / Wireless Network ldentification sequences should
be available in order for the Source Separation module to identify the desired signal.

In spite of the advancements in SS modules and the increase in wireless capacity, the standards for adding SS modules
to the wireless sets are subject to resolving the side issues such as the environmentally important wireless r.f. power
overloads.

I11- Ultra Weak Signal Condition

In this presentation, we will use the traditional 2 dimensional constellation type where the possible modulation signal
set is specified by a discrete points, states or centroids S, , k =1 to Z in a normalized constellation space. The

concepts in this presentation can be extended to advanced modulation formats as long as proper distance metrics are
defined for the modulation points or states.

Sq(t)= Re{[SR, (t)+ JSgo (t)]e ot } where S (t) is the received signal from an antenna port (3.1)
Sp (1)=Sg, (£) COSW,t) — S (OSINMWL) , Sgy 0 (1= Fui o(Spio®:Siwio M), N, o (0= 0y, 1Z, 0 (1),
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where Sg, o (1), Sp 1 o(t), Siyio(t) N, o (t) are respectively, the base band versions of the received, desired,

interference and the noise signals. I and Q are the typical inphase and quadrature components of the signals. The term
0, o (t) is the diffusion term and Z(t) is the white noise random signal with unit variance. The term

fax (SD,’Q ®,Swio (t)) denotes the mixing operation between the co-channel desired and interfering signals.

Nano Antenna Port

|
. )
(Optional) [ Nano !
r--- Cavity X
| |
ooo E \ 4 T 000
|

! Ultra-Weak | o Ultra Weak |q-------+

\ Pre-Amplifier Processor |

1 ]

] ]

Lo > |

4 f '

LNA (==--- it ! !

e o Side ' !

! Demodulator/ ! '

1 |

)

1

1

l I Sampler
| e e e e e e e e e 1
____________________________ !

Optional Analog Co-Channel Interference Reduction or
Signal Source Separation Module

Demodulator & Sampling Stages

POST SAMPLING MODULES:

Digital Signal Source Separation / Interference Reduction

Tracking Signal Quality Measurement for
Preamplifiers and Signal Source
Separation Modules

Channel Decoding

Statistical Modeling like Hidden Markov State
Source Decoding Transition Machines, Data Clustering

Fig. 1- Simplified Receiver Front End

In the simplest time invariant channel model, the baseband received signal can be represented by the following
expression,

fuxio (So10®: S ®)
Lc-1
= hep (1) o (©) + 2 N (1) Sp) o (E=KT) +hyy (1) Sy (1) (3:2)
K=1
where the S(t) terms have unit powers and the coefficients h(t) vary slowly with respect to the associated s(t) . The
first and second terms represent the desired signal and the delayed ISI signals, respectively. The term hg (t) s, o (t)
represents the sum of the co channel interfered signals. The recovery of the desired SD,’Q (t) signal(s) by analog and
post sampling signal source separation or co-channel interference reduction modules

-4-



is denoted by the operator f SS( ) However, the signal recovery can be performed by conventional means only if the
desired signal hy;, (t) sp,,  (t) power is equal or above the noise floor.

The Ultra Weak Wireless Signal is defined by the condition
[heo (05010 OF < N7, © (33)

which implies that the signal power [hSD O Soio (t)]2 is below the noise floor. Note that the received signal f,,,, (t)

may have average power levels above the noise floor, but the desired signal average power could still be below the

[ho ®F

noise floor. The power ratio for the desired and total received power is denoted by a2,y = =—2—tre

[fMIX (t)]2
By employing Ultra Weak wireless signal processing via ultra weak preamplifiers or other means, the desired signal
average power would become greater than the noise floor and the source separation modules would be able to operate.

By labelling the Ultra Weak signal processing (or pre amplification) by an operator f ( ) where

(Fow [fux oo (1), Siyi o (1) Ny o (t)]) would have desired signal power above the noise floor, the recovered
signal which is generated by the source separation module becomes:

Sor0(M = T s (Fow [ Sor0 (0 Sw10 M), N, o (),

The recovered signal is either mapped to a modulation constellation point, state or centroid S, , k=1to Z or itis the

constellation point itself, depending on the source separation method. The received signal data points are usually
corrected by using the information from channel decoding and other modules.

IV- Adaptive Stochastic Resonance Array (ASRA) Preamplifier

A. ASRA Architecture

The ASRA method focuses on the pass band stochastic resonance external additive or injecting signal option for
boosting the ultra weak or sub threshold signal. The ASRA method (Fig. 2) is the simplified extension of the
combined Adaptive Stochastic Resonance [13], Supra-threshold Stochastic Resonance [16,17] and Adaptive Array
[14,15] methods for processing modulated Ultra Weak wireless signals at the receiver.

As shown in Fig. 2, an array is formed by dividing the received signal from the antenna or the nano-cavity port into M
transport paths. In each transport path (or array element) i, an additive random signal S, (t) with certain probability

distribution is added to the received signal and the path is emphasised with weight multiplier w; (t) . The multiplication

is performed by a semi-ballistic nanostructure Gilbert cell such as nano FET Gilbert cell transistors with the minimal
amount of field (voltage) to transport (current) translations [18,19]. Due to the ultra weak signal condition, the in
phase and quadrature components are not usually implemented at the multiplication stage. Therefore, the weights

w, (t) are usually not separated into | (in phase) and Q (quadrature) components.

The additive signal S, (t, §i ,fi) is a random signal which is modulated in the same format as the desired signal and it
possesses a probability distribution p(S; (t); gi) with controlling distribution parametersgi and controlling

modulation parametersfi for the additive signal modulated format. The additive signal tries to imitate the desired
signal s, (t) or at least tries to produce a signal which is aligned with the desired signal in order to boost the desired
signal power to levels above the noise floor. Basically, the aim is to modify the additive signal probability

parameters §, such as the square root of the variance o (S; (t)) and to modify the additive signal modulation parameters

gi such as phase (S, (t)) in order to increase the correlation coefficient
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(sp (1), (1))

P(S;(1),S, (t)) = ——====L between the desired and additive signal or to equivalently decrease the average
s5()- S (1)
phase difference between the two signals.

It is not possible to track the desired signal adaptively by only using one additive signal at all times. Therefore,
diversity is employed by using weighted M additive signals, s; (t) with i = 1 to M and by adjusting the controlling

parameters of the M injecting signals S; (t) in order to maximize the correlation between the desired signal and the

output of the array Y, (t). In fact, it can be shown that the desired signal can be presented by a weighted mixture of

random signals with different probability distribution or by signals that have the same p.d.f. format but with different
parameterization, such as the weighted Gaussian distribution [20].

The maximum correlation between the desired signal and the array output is achieved indirectly by comparing the base
band version of the array output Yy, (n) with the modulation states during tracking or the desired signal

estimate §,, (n) during normal operation, calculating a SRQM (Stochastic Resonance Quality Measure), and by

modifying the distribution parametersgi and controlling modulation parametersfi of S, (t, z§i ,fi) , in order to

maximize the SRQM. The plot of the SQRM verses the injecting signal modifying parameter such as the signal
deviation resembles a resonance curve. The signal power of the array output will have power levels above the noise
level. Therefore, the ASRA pre amplifier output can be processed by the Source Separation modules in order to
estimate the desired signal.

The conduction path segment S (t) from the output of each antenna or the nano-cavity port is divided into M equal
size transport paths S, (t), i=1 to M having the following in-phase and quadrature base band format:

SRiI (t) = Ai (M )(SRI (t) Cos ‘9i - SRQ (t)Sin ei) 1 (4.1)
Srio®) = A (M)(Sg (t)sind, +Sg, (t)cosg;) fori=1toM

The terms A (M) and &, are the attenuation and the phase shift angle for each transport path due to the division. The
phase shift is usually neglected up to the microwave range, but it may be considered for the millimeter wave bands.

The mentioned terms can be determined from the geometry of the transport path division during actual
implementation.

Y110 (n):Zyjl,Q (n)+VI,Q(n)’ (4.2)

where Y, o (n) is the sampled in phase & quadrature equivalent base band presentation for the array output,

V, o (n) is the measurement error for the array output and
Vit () = Gur o (W, (A (M):Sg o (M) + 8,1 (M) + N,y o (M]) (4.3)
is the sampled weighted base band format for the array components, i =1 to M and Ni,'Q (n) is the equivalent

baseband presentation of the transport path noise N, (t) before the multiplication.

Lc-1

SRI,Q (n) = hg, (N) Sy Q (n) + ZhK (n) Spio (n=Kk)+hy(n)s, 1.0 (n) (4.4)

is the equivalent base band presentation for the received signal, and the function g;, ,Q( ) is used to signify the fact

that the multiplication does not preserve the signal linear format because there may be desired signal or interfering
signals components that have power levels below the noise floor and would not be amplified by the weights.

For each path, the injecting signal S, (t) can only be a partial duplicate of the desired signal S, (t) and therefore,
portions of the desired signal would still have power levels below the noise floor. Therefore, by using the term
Xi1o (n) for the equivalent base band presentation of the multiplier input, the multiplication function gi,’Q( )

satisfies the following condition,
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Xi1.0 (N) < 410 (Wi (0), X, o (N)) < W, ()., o () (4.5)

Aside from the multiplication reduction, it is difficult to analyze the system dynamics directly due to the complexity of
the internal noise mechanics and the difficulties in estimating the misalignment of interfering signals, injecting signal,
and the internal noise signal with the ultra weak desired signal for each array element.
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Fig. 2- Adaptive Stochastic Resonance Array

Therefore, we will resort to adaptive methods and the data samples that are available during tracking and acquisition in
order to estimate the Stochastic Resonance Quality Measure (SRQM) and to modify the distribution parameters %
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and controlling modulation parametersfi of S, (t, §i : Ei) .The SRQM correlates the base band version of the array
output Yy, ,(n) and the desired signal. The base band version of the array output Y., o (n) s always available, but

the desired signal estimates S, (n) become available by the Signal Source Separation module

Sp1o(n) =T (yT 1o (n)) only after an initial successful operation of the ASRA preamplifier. Therefore, during the

signal tracking mode, the modulation signal set (constellation points) itself will be used to optimize the parameters of
ASRA.

B. ASRA Quality Measures

The Stochastic Resonance Quality Measure (SRQM) which is basically a measure of the correlation between the array
output and the desired signal is maximized by adjusting the pdf parameters of the injecting signals such as the variance
and by adjusting the injecting signal modulation phase. In the adaptive scheme, the quality measure is estimated
during each operation cycle in order to examine its gradient. The SRQM [21-23] can be estimated by many methods
but the focus in this presentation will be on Standard Mutual Information and Quadratic Mutual Information method.
The Normalized Correlation measure and other methods will not be covered. By estimating the SRQM, we have
virtually alleviated the requirement for examining the internal dynamics of the ASRA preamplifier.

1- Standard Mutual Information

Standard Mutual Information can be used as a measure of Stochastic Resonance without the requirement of desired
signal estimates S, Q (n) and it is usually employed at the tracking phase, where the Source Separation module is not

operating. This SRQM which is dependent on the modulation format and the constellation assignment will activate the
ASRA so that the Source Separation Module can extract the desired signals.

The source separation technology allows different interfering users to use the same or different transmission protocols
in the relevant common frequency band. If there is an cooperative channel agreement to use the same modulation or
transmission protocol, then either intrinsic identifying signal coding / transformation or Reference / Wireless Network
Identification sequences should be available in order for the Source Separation module to identify the desired signal. If
intrinsic signal coding is used to identify the desired signal, the SRQM operates by using the modulation format and
the Source Separation Module will extract the desired signal. If reference or identification sequences are used to
distinguish between users, the ASRA and Source Separation modules will try to lock to the sequences at the tracking
phase.

The standard Mutual Information measure requires only the knowledge of the sampled base band version of the array
output Yy, o (n) and the modulation format in the form of signal constellation or centroids or states. The sampled

Yri0 (n) are assumed to be properly scaled to match the signal constellation format. Let Y be the set for the array
output with elements y o (n), and let S be the set for the desired signal possible points on the modulation

constellation or states or centroids with elements s, = (Sy,,Sxo ), k= 1t0 Z. The probability distribution for Y,
p(y) can be represented in either discrete or continuous format.

For continuous presentation of Y, the standard mutual information is

Z
P(Sy.Y)
lsp(S,Y) = P(sy, y) log————=dy (4.6)
i LKZ;‘ ‘ P(s) P(Y)
z
S
~ [ 3 p(y1,)p(s,) 1og 2V o)y
P p(y)
For discrete presentation of Y with N+1 samples, the standard mutual information becomes
I (S,Y)= ZN:ZZ: p(s,,y) log P(S., y(n —m)) 4.7)
5T m=0 k=1 ‘ p(s, ) p(y(n—m))



=3 P10 (1= M)I0G P (1= M)+ 3 P8 DY 10 (1= M)15,)109 PV o (1) 5,)

In general, p(s,)=1/Z and by using the Parzen Window method for N+1 samples of Y, the probability distribution
function for Y which will be available in time period n will be

l N
P(Yri0) N ZG(yTI,Q ~Vrig(n=m),oy),
m=0

where the Gaussian Kernel is defined as

1 (Y1 = Yo (N=m)) + (Yo — Yo, (N—m))?
G(yT o~ Yrig (n— m),Gj) = 27Z'Jy EXp{ : A 20_5 : (4.8)
and the conditional densities are
1 (Sk; — Yri (N—=m))? + (5S¢ — Yo, (N—M))°
P(rio(M=m)s) =2 exp{ — LU (4.9)
7o, 20,

Note that we have not used any reference data or the estimated desired signal §D,’Q (n) from the Source Separation

module. The Quadratic Mutual Information and Normalized Correlation methods that are covered in this presentation
will use the estimated desired signals S, ,, (n) along with the ASRA outputs Y., , (n).

2- Quadratic Mutual Information
Inspired by Renyi's quadratic mutual information measure, researchers have come up with other information theoretic

distance measures to estimate the mutual information. Let Y be the set for the array output with elements y;, (n),

and let S be the set for the estimated desired signals S, o (n) generated by the source separation modules. The Cauchy
Schwartz quadratic Mutual Information [23] (CS-QMI) measure which is based on the Cauchy-Schwartz inequality is

L], P* (s y)dsdy. [ [ p*()p* (y)dsdy

Ics(S'Y)=|Og :
ELN&WNQMW%WJ

(4.10)

The mutual information is simplified by using the Parzen window method with the Gaussian Kernel for the joint and
marginal distributions.

1< & 2 2
p(s, y) :WZG(S"Q _SDI,Q (n—m),as )G(yl,Q - yTl,Q (n_m)'ay) (4-11)
m=0
1 N ~ 2 1 & 2
p(s) =WZG(SI,Q —Sp1o(N=m),o;) and p(y) =WZG(yI,Q —Yrio(N=m),oy)
m=0 m=0

The CS-QMI measure is reduced to the following expression,
V(S, Y)Vi (S)V, (y)

I (S,Y)=log
Vie (5, Y)
where the variables v(s, y), v;(S), V,(y)and v, (S, y) are defined below:
1 & A oA . . .
v(s,y) Z—ZZ [G(SDI,Q (N=0) =85, 0(N=1),207).G(Yr 1 o(N=1) = Y1, o (N }),207)] (4.12)
=
1 &Y - .
Vl(S)=FZZG( DIQ(n SDI,Q(n_J)’ZGsz)
i=0 j=0
1 QY . o,
v, (Y) —FZ _ G(yTl,Q(n_l)_ yTl,Q(n_ J)’Zo-y)

Il
o

0]
N

vm<s,y)=%z {%ze(so.q(n i) éD.,Q<n—j),zafﬂ.{%%cz(yw(n—i)—yT.,Q(n—Mﬂ}

=

i=0

-9-



C. ASRA Weight and Injecting Signal Controlling Parameter Update
1- Adaptive Controlling Parameter Estimation

By using the estimates of the Stochastic Resonance Quality Measure (SRQM) and other information [24], it is possible
to update the weights w, (n) of the array, the controlling distribution parameters$ and the parameters & of the
additive random signals S, (t, z§i f, ) with probability distributions p(S; (t); §i) . The general terminology I, (n) will
be used instead of I, (S,Y) and I s (S,Y) to indicate the measured SRQM between the array output Y., o (n)and the

desired signal S (t) at the update period n. The usual probability distribution controlling parameter is the square

DI,Q
root of variance or deviation o (S, (t)) .

The gradient of the quality measure with respect to the array weights is approximated by the following expression:
Als,v (n) _ IS,Y (n_l)_ IS,Y (n—2) AyTI 9“ (n_l)_ yn (n—2)
Aw,(n) Y (=D -yr, (1-2) Ay, wi(n-D)-w,(n~-2)

IS,Y (n _1) - IS,Y (I‘l - 2) AyTQ yiQ (n _1) - 9iQ (n - 2)
Yrq(=1)=yro(N=2) Ay;q W, (n-1)-w(n-2)
where ;, (k) and ¥, (k) are the in phase and quadrature a posteriori estimates of the weighted array components. We

(4.13)

assumed that the gradient with respect to the in phase and quadrature components of the weighted paths will move in
the same direction due to the fact that desired signal in phase and quadrature components experience the same channel
conditions. However, if that is not the case, then the methods for multiple optimizations [32-33] should be employed.

AYri0 . M .
The terms v can be estimated from y,, , (n) = Z Yiio (N)+V, o(n), as follows:
Yiio ’ i ’
M
Vio (n) = Y10 (n)_zijQ (n)
j=1
Arg 0 { v
2 ~ Yiio(M+Vv,o(n) (4.14)
AYiig Mg ; e e

Yti0 (n_l)_zyjl,Q (n_l)_yTl,Q (n_2)+29j|,Q (n-2)

~1+ = =
in,Q (n_l)_ in,Q (n—2)

The gradient of the quality measure with respect to the injecting signals S, (t) probability distribution controlling

parameter 4, , belonging to 1§i is approximated by the following expression:

i1,Q

AIS,Y(n): IS,Y(n_l)_IS,Y(n_Z) AyTl,Q 9iI,Q(n_1)_yil,Q(n_2)
Al9i|,Q yTI,Q(n_l)_yTI,Q(n_Z). Ayi|,Q l‘giI,Q(n_l)_'gil,Q(n_z)

(4.15)

The simplest form for updating the weights w; (n) and the injecting signal probability distribution controlling
parameters 4, , such as the deviation o'(S; (t)) belonging to 1§i would be the following steepest ascent expressions:

Al (n)
Aw; (n)
+ 0 o (W, () AB(W, () + 0.50 5, (W, (1)) 5y (W, () (AB2 (W, () — AT)

Algy (n)
"giI,Q(n) = '-giI,Q(n_1)+U(3iI,Q(n))—AI§
i1,0

+ O_Ann (‘9| 1,.Q (n))ABI Q (‘9| 1,Q (n)) + O'50Ann (‘9| 1,Q (n))o_,’Ann (‘9| 1,Q (n)) (ABIZQ (‘9| 1,.Q (n)) - AT)
-10-
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where 77(..(n)) are the gradient adaptation factors, o ,,, (...(n)) are the stochastic annealing coefficients, the Brownian
increments AB(..(n)) = B(..(n)) — B(..(n —1)), B(..(n))are Brownian motion white Gaussian noise generators with
unit variance, and o' ., (..(n)) are the annealing coefficient discrete derivative with respect to time increment

AT between samples. The annealing terms [34-36] were included to escape from local maximum points.

The gradient of the quality measure with respect to the injecting signals S, (t) controlling modulation parameters

g?i such as the modulation phase is analyzed after the procedure for estimating the pre weighted array components.

2- Base band equivalent signal estimates for the weighted and pre-weighted array components

In order to use the mentioned simple updates or to use more advanced formats, the estimates for the weighted array
components )A/H'Q (n—=Kk),k=1,2, ... are required. Moreover, better estimates for the gradients and other updating

procedures can be used if the pre weighted array path components X;, , (N —Kk) can also be estimated. For this

ilQ
purpose, we use the relationship between y;, , (n) and the available injecting signal sampled base band

format S, , (n) along with the sampled base band version of the array output Y, ,, (n).

As mentioned before, for each transport path, the desired signal or interfering signal components still have power
levels below the noise floor even after the addition of the injecting signal. Therefore, only a portion of the pre

weighted signal X;, ., (n) would be amplified by the weight w; (t) and the rest would not be amplified. If
a;, o () denotes the fraction of X;, ,(n) that is amplified by the weight at the operation cycle n and by assigning
Bi1o(N)=A(M)Sg, o(n)+N;, o(n), the weighted array element becomes
Yiro (M) = 011 o (W (N).LA (M).Sg, o (M) + Sy, o (M) + Ny, o (M)]) (4.17)
= gil,Q (Wi (n), XiI,Q (n))
= a1 o (MW, (N)(B,, (M) + 5,1 o (M)+ (L= 1, o (M)By o (M) + S, o (M)
By defining further variables,
D1 o(N) = o(NB;, o () andC,, o (n) = (1-a;, o (N))B;, o (M), (4.18)
Vj10 (M =+ S, o (M(Dy o (M +Cyy o (M) Jw, (D, o (M) + € o ()

M
and by using the available array output Yy, , (n) = Z Yiio (N)+V, o (n), the required weighted array
j=1

estimates ¥, (N — k), k=1, 2, ...can be determined indirectly by estimating the variables D;, ,(n)and C;, ,(n).

The extended Kalman Filtering method [37] can be used to estimate the variables D;, ,(n) and C;, ,(n). For
simplicity, the I and the Q subscripts will be emitted.

Let D(k) =[D, (k) D, (k)...D,, (k)]and C(k) =[C,(k)C, (k)...C,, (k)] be the vector format for the mentioned
variables. Also, let D(k) = [D, (k) D, (k)...D,, (k)] and C(k) =[C,(k)C, (K)...C,, (k)] be the vectors for the a
posteriori estimates with the corresponding a priori estimates I5(k) andC (k) and update matrices Ap,, Ap,, Ag;
and A, . The simplest a priori update mechanism is

ﬁ(n) = ADl[S(n -1+ AD2[3(n -2), é(n) = AClé(n -1+ Aczé(n —2), and Kalman Filtering can be used to

calculate the a posteriori estimates [3(k) and é(k) .

The KFPE (Kalman Filter Preliminary Equations) are listed below:

~ M ~ = -1 -~ =

V. (n) = Zﬁ+ s, (M(D,(m+C€, ) )(w,. (mD;(n)+C, (n)) (4.19)
j=1

-11-



as the a priori estimate of the array output

D(n) = D(n) + Ao, (D(n) = D(n—1)) + Wy (N —1), (4.20)
where W, (n—1) as the process noise with covariance Q, (n—1),

C(n) ~ C(n)+ A, (C(N)—C(n—1)) +w, (n—1), (4.21)
where W, (n —1) as the process noise with covariance Q. (n —1),

Yr (n) = ¥ (n) + Hy (D(n) = D(M) +,, (n), (4.22)
where Vv, (n) as the measured noise due to D(n) contribution with variance Ry (n),

Yr () = §r () + He (C(n) = C(m) + Ve (n), (4.23)
where V.. (n) as the measured noise due to C(n) contribution with variance R (n),

HD(H){ami) oy () oy (n) oYz (n) 0:(n) 6yT(n)} @22

2D, (n) oD, (n) """ 3D, (n)} and He (n) {acl(n)’acz(n) aC, ()
are respectively the Jacobians of the array output with respect to D(n) evaluated at ﬁ(n) , and C(n) evaluated at
C(n).
Ho, =S, (0)(D,(n)+C,(n))
He; ==S, (D, (n) +C,(n))”

2 -1

(w, B, (m) + €, (m)+ w, (mb-+ 8, (M(B, (m)+ €, (m) ") (4.25)
(w, (B, () + €, (m)+ L+ 8, (B, (m) + €, (M)

&§(D(n)) = D(n) - D(n) and &(C(n)) = C(n) — C(n) are the a priori estimate errors (4.26)
P, (n) = E[(D(n)) §(D(n))" Jand P (n) = E[€(C(n)) §(C(n))"] (4.27)
are the a priori estimate error covariances,

8(D(n)) = D(n) — D(n)and &(C(n)) = C(n) — C(n)are the a posteriori prediction errors (4.28)
B, (n) = E[&(D(n)) D) Tand B, (n) = E[&(C(n) &C(M)] (4.29)

are the a posteriori estimate error covariances,

The a posteriori estimates are related to the a priori estimates by the Kalman gain,
D(n) = D(n) + Ky (n)(y7 (n) = ¥ (n)) (4.30)
=D(n)+ K, (n)(H, (D(n) —D(n)) + v, (n)) where K, (n)is the Kalman gain

C(n) =C(n) + K¢ (M)(y; (n) - I (n)) (431)
= é(n) + K (n)(H.(C(n)— é(n)) + V. (n)) where K. (n) is the Kalman gain

The KFUE (Kalman Filter Update Equations) are stated below, (4.32)

ISD (n) = AD1I3D (n —1)ADlT +Qp (N —1) is the update for D(n) a priori estimate error covariance,
I5c (n) = AClFA’C (n —l)AClT + Q. (n—1)is the update for C(n) a priori estimate error covariance,
K, (n) =P, (N)HL (N)[H, ()P, (N)HT (n) + R, ()] is the filter gain for D(n),

Kc(n) =P, (NYHZ (N)[H¢ ()P, (N)H] (n) + R (N)] ™ is the filter gain for C(n)

[S(n) = IS(n) + K (n)(y; (n) = Y; (n)) is the a posteriori estimate for D(n),
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é(n) = é(n) + K¢ (n)(y; (n) = y; (n)) is the a posteriori estimate for C(n),
ISD (nN)=[-K,(nH, (n)]ISD (n) is the update for D(n) a posteriori estimate error covariance,
ISC (nN)=[-K.(nH, (n)]ISC (n) is the update for C(n) a posteriori estimate error covariance,

In order to calculate the covariances Q, (n—1)and Q. (n—1), we can us the estimates
Wy (n—k) =D(n—Kk)—=D(n—k) = Ay, (D(n—Kk)-D(n-k)), k=1, 2,... (4.33)
We(n—K)=C(n—k)—C(n—k)— A, (C(n—K)=C(n—k)), k=1,2,...

In order to calculate the variances R, (n) and R.. (n) ,we can us the estimates

Uo(n=K)=y; (n=K) =¥, (n—k)—H, (D(n—k)=D(n—k)), k=1,2, ... (4.34)
Ve(n=K)=y,(n=k)=y; (n=k)—H.(C(n-k)-C(n-k)) , k=1,2, ...

The Ap,,Ap,, A, and A, matrixes which are used for the a priori estimates of D(n) and C(n) are usually diagonal

and are updated in order to minimize the mean square error between the a priori and a posteriori estimates of
D(n)andC(n).

By using the a posteriori estimates IIS(k) and é(k) , the weighted array estimates become

Vi o(n)= (1+ Siig (n)(6| Lo(N)+ cA:i 10 (n))l)'(wi (n) lji 1o(N)+ CAi 1.0 (n)) (4.35)

The pre weighted array estimates are given by
)’ZiI,Q (n) = DiI,Q (n)+CiI,Q (n)+SiI,Q (n) (4-36)

The fraction of un-weighted array element signal which is amplified by the weights is given by
@, oM =Dy o(n).(D;, o (nN)+C;, 4 (n)™ (4.37)

3- Improved Controlling Parameter Estimation (including additive signal modulation phase)

A better estimate for the gradient of the quality measure with respect to the injecting signals S; (t) controlling

parameter ,, , belonging to gi is expressed below,

Als,v(n)z IS,Y(n_l)_IS,Y(n_Z) AyTl,Q ayil,Q(n) )’zil,Q(n_l)_)zil,Q(n_z)
A‘9i|,Q yTI,Q(n_l)_yTI,Q(n_Z).Ain,Q .8XiI,Q(n).lgiI,Q(n_l)_lgil,Q(n_Z)
Vo) .

P RO g (Mw; (n) + (1_0?”,(3 (n)) due to Yiio (n) = Qi g (nNw, (n)XiI,Q (n)+ (1_aiI,Q (n))XiI,Q (n)
Xi1 o (M)

(4.38)

Similarly, a better estimate for the gradient of the quality measure with respect to the array weight is expressed below,
AIs,\( (n) _ Is,Y(n_l)_ IS,Y (n—2) AyTl ayil (n) )A(il (n_l)_)zil (n—2)
AWi(n) - Yri (n_l)_yTl (I’I—Z) . Ayn .aX“ (n) Wi(l’l—l)—Wi(n—Z)

IS,Y (n _1) - IS,Y (n - 2) AyTQ ayiQ (n) )A(iQ (n _1) - )A(iQ (I’] - 2)
yTQ(n _1) - yTQ(n _2) ' AyiQ 'aXiQ(n). W (n _1) — W, (n _2)

where the assumption regarding the Pareto optimality between the gradient with respect to the in phase and the
quadrature components still holds.

(4.39)

For the modulated format of the additive signal S; (t, §i : g?i) ,the gradient of the quality measure with respect to the

injecting signal controlling modulation parameter such as the modulation phase 8(S;,n) belonging to the vectorfi is
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approximated by the following expression:

Als,v(n) _ IS,Y(n_l)_IS,Y(n_Z) Ay, ayil(n) )zn(n_l)_f(n(n_z)

AOGL) Ve (-D -y, (1-2) Ay, 3%, (1) 0(5,,n-D-6(S,,n—2) (449
IS,Y (n _1) - IS,Y (I‘l - 2) AyTQ ayiQ (n) )’ziQ (I’l _1) - )A(iQ (n - 2)
yTQ(n _1) - yTQ(n _2) . AyiQ .aXiQ(n).H(Si’n _1) _e(siln _2)
where the controlling modulation phase &(S; , n) is used for the additive signal modulation format such as
S (1) =S, (O cosw,t +6(S;)) - Siq (D)sin(wt + 6(S;)) (4.41)
St
=[S (t) + Si% ()% cos[w,t + 6(S;) + arctanS'Q—Et))]
il
0(5,,1) = (5,01 + (63, ) e ) w2
X " T No(s, ) '

+ 0 (6(S,,1)).AB(6(S;,1)) + 0.56 4, (B(S, 1)) 5 (B(S,, 1)) (ABZ(6(S;, 1)) — AT

where g ., (€(S;, n)) is the stochastic annealing coefficient, the Brownian increment [42].

AB(6(S;,n)) = B(4(S,;,n)) —B(O(S;,n—-1)), B(E(S;,n)) is a Brownian motion white Gaussian noise generator
with unit variance, and o’ ., (6(S;, n)) is the annealing coefficient discrete derivative with respect to time increment
AT between samples. Modulo 27z operations are performed after each phase update.

The gradient method for the weight updates is easier to implement than the adaptive array method. However, if it is
desired to use the adaptive array method for optimizing the weights w; [14-15] during the periods that the desired

signal estimates are available, the pre weighted array estimates )A(i,’Q (n), i=1to M have to be replaced by effective
pre weighted estimates,

Xi e 1.0(N) =[5 o (M) + (L=, (n))/W; (N)] X;, o (n) and by defining the vectors, (4.43)
Xeiio = [X, e o (n), X, e ) R X e | o ()] with covariance matrix Ry, ¢ ,

d o =85 0MMA,1,..,with M elements

where §, Q (n) could be the estimated desired signal, the intrinsic identifying signal coding / transformation or the
reference / wireless network identification sequences.

The minimum mean square error version of the weights is given by the following expression,
v A -1
[Wl(n)’wz (n),..., Wy, (n)]MMSE = X0 Ry (4.44)

Whereas, the MSINR (Maximum Signal to Interface and Noise Ratio) version of the weights becomes
[W, (1), Wy (), Wy (M) ] = X o A Ry where R,y = (X g —d X d)(X —d X d) (4.45)

Note that complex conjugate expressions are not used because the weightsw, (t) are usually not separated into I (in

phase) and Q (quadrature) components. As mentioned before, the ultra weak signal condition does not provide
favourable means for implementing in phase and quadrature components before the array output. Therefore, multiple

optimization procedures may have to be employed in order to optimize the weights w, (t) with respect to separate | and
Q calculations.

Now, we will examine the nature of the injecting signals S, (t) . The injecting signals are usually created by random

number generators and also, the independence of the M injecting signals is a critical factor for the performance of the
ASRA. Fortunately, the independence of the injecting signals is satisfied to a large extend by using stochastic
annealing for the additive function parameter update.

-14-



In some implementations, the injecting signals S;, , (n) are not created by random number generators and simpler

methods are used. For example, the base band signal S;, ., (n) can be generated by using the data from the previous

i1Q
operation cycles and the required variance. When the probability distribution controlling variance aiz, Q (S, Q n) is

updated, then by using the weighted Kernel method with K sampling points,

o(10(Siig:M) =LK§S§Q (n—j) Kern(s“‘Q(n) _hS”'Q(n_ J)]MJKZ::O Kern[s”‘Q(n) _hS”'Q(n_ j)ﬂ (4.46)

where the smoothing parameter h, =1.065(S;).(K +1)*and Kern(x) = Exp(-x*/2)/+/2x is the Gaussian

Kernel, one can solve for S;, ,

(n) . Another simpler method is to use the equal weight variance estimation on the K+1

samples,
SiZI,Q (n)=(K +1)(O-i2I,Q (SiI,Q ) — Gizl,Q (SH,Q ,N=1))+ Si2|,Q (n-K-1) (4.47)

The sign of the signal is determined by examining the data from the previous operation cycles and the number of
required zero crossings per time period T [38],

Ny(0) =T.P(S;, o (Dt S, o (1) =0). E{S/, o (0] 511 (1) =Of , where p(S,, o (1)) is the p.d. (4.48)
D. ASRA Performance

LetS?(t) = A*(S;)oy , where of = NJ(t) is the preamplifier input noise variance and A’ (S;) > 1. In fact,
we are not able to generate and attenuate injecting signals S, (t), 1 = 1 to M to levels below the noise floor.
Also, let the desired signal power S (t) = hZ) = A*(S,)o?, where A%(S,) <1 (ultra weak signal condition),

and the sum of the interfering signal power S7, (t) = h?, = A*(S,, )}, . As mentioned before, A (M) is the
received signal S, , () attenuation due to the creation of M arrays.

S5 (1):Si(1) = i (Sp (1), S; (D) SB(1)-S7 () (4.49)
= p;(Sp (1), S; (DA (S)A(S, oy
where the correlation coefficient range reduces to 0 < p(S; (t), S, (t)) <1 during acquisition and normal

operation. Recall that the received signal is given by
Lc-1

SRI,Q = hSD ®) Spi,Q )+ ZhK (t)SDI,Q (t—KT)+ th (t)SIN 1,Q )

The pre weighted signal component power becomes

X2 o (1) = [A(M).Sa o) +S, o) + N, o) (4.50)

= |:A| (M).[hg () sy, Q (t)+ Ii__lhK (t)SDl,Q (t—KT)+hy (t)s 10 ]+ Sil,Q (t)+ Nil,Q (t)}

Lc-1

~ AZ(M)hZ, + A2(M) > hZ +AZ(M)hZ +SZ(t) + o2 +2A (M)S, ) S, (1)

Lc-1

+2A (M) Y h 5o (E—KT).S; (1) + 2A (M)hy 5, (1) 5, (1)
K=1
Using the following approximation for the weighted sum,

M M M
Yo 0 =D ¥ 10 1) & D Wi X0 (1) # D Cpi(Sp (1), S ()X, o (1), where C is a constant, (4.51)
=t =1 j=1
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Z{A]Z (M )A2 (Sp)+ 2Aj (M )pj (Sp (1), Sj (t))Aj (Sj)A(SD)}'ij (Sp (), Sj (t))O',%,
SNR ~ 12 (4.52)

2. Cpi(So(0).8, (D)o

~ Arfvg (M )A2 (SD) + 2Aavg (M )pavg (SD (t), Sj (t)v M )Aavg (S|)A(SD)

A, (M) is the average signal attenuation due to the creation of M conduction paths or array elements.
A., (S;) is the average additive signal level in terms of multiples of noise level and A(S;) is the desired

signal level in terms of fractions of the noise level. The first term is less than 1 and it can be ignored.
Payg (Sp (1), S (1), M), which is the average correlation coefficient between the desired and additive signals

is dependent on the possible variations of the desired signal, the array size M, and the interdependence of
S;(t) ( =1to M) functions, and it increases as M becomes larger. The variations of the desired signal are

dependent on the transmission and modulation schemes.

The condition for signal detection is 2A,,, (M) p,,, (S; (1), S; (1), M)A, (S))A(S,) >1. (4.53)

Due to the interdependence of additive signals, for M>1

Pavg (Sp (®), Sj ,M)<M “Pavg (Sp (1), Sj .0 (4.54)
=[1= Pag (S; (1), S; (1), M i # [)].Mp,,q (S5 (1), S;(1).2)

where p,. (S; (t),S;(t),M,i = j)is the average dependency of an additive signal with respect to the other

M-1 additive signals, subject to the following condition,

[1= Pag (Si (1), S; (1), M +1i = [)IM +1) 2 [1- p,o (S; (1), S; (). M, i = J)]M, (4.55)
where the equality only occurs atM .

Similarly, the expression for Signal to Interference and Noise Ratio becomes
M

Z{AjZ(M)AZ(SD)+2Aj(M)pj(SD(t)’Sj(t))Aj(Sj)A(SD)}'ij (SD(t)ij(t))-ari
SINR ~ ——=
Z{Aiz(M)AZ(Sm)—}-Aiz(Si)+2Ai(|V|)pj (S (t)’Sj(t))Aj(Sj)A(SIN)+1}ij(SD(t)!Sj(t))'O-li

~ Ajvg (M )A2 (SD) + 2Aavg (M )pavg (SD(t)7S] (t)! M )Aavg (SJ)A(SD)
) A:vg (M )AZ (SIN ) + A;vg (SJ ) + 2'A‘avg (M )pavg (SIN (t)! Sj (t))Aavg (SJ)A(SIN ) +1

(4.56)

Note that even though SINR is typically less than 1, the source separation module is able to extract the
desired signal because SNR is slightly above 1. In spite of the advantages of processing the delayed
contributions of the desired signal, the respective ISI terms have not been included in both the SNR and
SINR analysis for simplicity.

V- Adaptive Transport Array (ATA) Preamplifier

Unlike the Adaptive Stochastic Resonance Array, the ATA method is a recent addition to the ultra weak signal pre
amplifier technology. At this primitive stage, the ATA method can not be practically implemented in the compact
wireless set and it requires further research for optimizing and reducing the number of arrays.

This section is basically an introduction to the preamplifier concept and in order to simplify the calculations, we have
made the wild assumption that the aggregated sum of the received channel conditioned desired and interfered signal
components does not contain any white noise component. The excess noise due to the received signal components
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will be considered in subsequent papers.
A. ATA Architecture

For the Ultra weak power condition, where the desired signal portion of the received signal has an average power
below the noise power, we like to capture or emphasise the time periods that the instantaneous or short term noise
power is smaller than or equal to the instantaneous received signal power in spite of the fact that the average noise
power is greater the average signal power (see Appendix I). In the primary conduction path at the output of the nano
antenna or nano cavity modules, if the ultra-weak signal condition still exists, the mentioned criteria only occurs for
short periods of time.

However, if we have enough duplicates of the primary conduction path, then we can claim that most likely at any time
instance, at least one of the duplicates will have a lower or equal instantaneous noise power with respect to the desired
signal power. By emphasising or placing more weight on the special conduction path duplicate(s) that meet the
mentioned requirement at each update period, we have effectively captured the higher signal to noise power signal for
all time periods.

Therefore, an array is required and the conduction path segment S (t) from the output of each antenna or the nano-
cavity port is divided into M equal size transport paths S, (t) , i=1 to M having the following base band format:

SRiI (t) = Ai (M )(SRI (t) Cos Hi - SRQ (t)Sin ei) 1 (5.1)
Srio®) = A(M)(Sg (t)sind, +Sg, (t)cos g;) fori=1to M
The terms A (M) and &, are respectively, the attenuation and the phase shift angle for each transport path due to the

path division. A, (M) decreases as M increases and the phase shift is usually neglected up to the microwave range, but

it may be considered for the millimeter wave bands. The mentioned terms can be determined from the geometry of the
transport path division during actual implementation.

Seir ()= A M) fue (So, (), S (1) (52)
= u;, (t) with o;, (t)Z,, (t) as the corresponding noise

Srio () = A (M) f (Soo (1), Sio )
= ft;o (1) With oy (t) Z, (t) as the corresponding noise

where Z; (t) and Z,,, (t) are typically Gaussian white noise with unit variance.

The ultra weak signal condition of the transport paths does not allow for the creation of separate in-phase and
quadrature components of the transport paths. The measurement access point is the output of the preamplifier.
Therefore, separate | & Q calculations or measurements will be made and multiple optimizations will be employed.

Thel & Q notations will be emitted for simplicity and the terminology S, (t) = 2 (t) with noise component
o;(t)Z, (t) shall be used.

For each transport path, the terms O'i2 (H)and ,uiz (t) represent the short term or instantaneous noise and signal powers,
respectively. Each transport path with signal S, (t) will be multiplied by the emphasis or weight factor w; (t) for

i =1 to M at each update period. The weighted transport paths become Y, (t) for i = 1 to M and the array output

M
becomes y; (t) = Z y; (t) + measurement noise. The ATA output signal Y, (t) becomes the detectable signal and

j=1
therefore, it can be subjected to conventional signal processing. The multiplication shall be performed by a semi-
ballistic nanostructure Gilbert cell such as nano FET Gilbert cell transistors with the minimal amount of field (voltage)
to transport (current) translations. [18,19]

It is interesting to note that individual weighted transport paths can not be tapped for conventional processing, because
the desired signal h, (t) sp,,  (t) average power is below the average noise level and the only access point is the

output of the array.
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Fig. 3- Adaptive Transport Array

B. ATA Number of Required Paths

Before, concentrating on the weight assignment and the multiplication process, it is necessary to consider the number
of required paths M for the ATA method. Assuming equal attenuation due to array creation A= A (M) and by

examining the instantaneous signal power,ui2 (n) and noise powerO'i2 (n) during cycle n operation for paths i =1 to M,
we note that the noise power is dependent on the path, but the overall signal power is approximately the same for all
paths. Therefore, generally 27 (n) = 2% (n) and ignoring the cross correlation terms,

ﬂz(n) ~ A? fl\jlx ®
Lc-1
~ Az(hszD + Z[hé + 2hK hSD RSD,SD (kT )] + hIZN j (5.3)
K=1
where short term expectation (covering cycle n operation) is applied over the mixed signal power. The power ratio for
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heo
2
fMIX (t)
In order to detect the desired signal, the following condition should be met for instantaneous noise and signal powers,
2 2
o S(n
D/lexlul (n) > O_iz (n)
A" (M)
where a3« is the power ratio between the desired and total received power. Recall that the ultra weak signal

the desired and total received power is denoted by a3, =

hé > o (n) or (5.4)

g A1 (1)
A*(M)
The Beta distribution B(c/ (t), @, By, 0 (1), Tauax (1)) can be used to model the instantaneous noise term o (t)

(O-iZMAX t) - O-iZMIN 1)y

condition < o} (t) for the average noise power.

distribution with mean o (t) = o, (1) + and variance
ag + Py
(O_iz (t)—o? (t))z _ (@ uax (©) = zo-izMIN ()" &g By
(aB +ﬁB) (aB +ﬂB +1)

In order to meet the instantaneous power requirement for at least one array component at any time, we impose the

condition
1

"2y aé/Mlxﬁ _
o; (t) —W
V2 Dev(o! (1)

2 2
1/M = Pr{(ji2 ) < aD’L’ui(t)} or M =2|1—erf (5.5)

A*(M)

where the equivalent normal distribution estimation of the Beta distribution has been used and

Dev(o? () = | o2 -7 )

2 2
For M=100, o7 (1) ‘QTG)(U ~1.652 Dev(o? (1))

C. ATA Weight Assignment

For the weighted path, the sampled transport path S, (n) is multiplied by the weightw, (n)
i (n) = f,(u,00, W) w; (n) w(n) + £, (u, 00, W) w; (n)o; (n)Z;(n) fori=1to M (5.6)
=u,;(N)+o,;,(nN)Z,(n), where 1/w; < fﬂ (u,0,,w,)<land f_(u,0,,w)=1

2

The multiplication reduction factor f# (u,0,,W,) is dependent on the ratio’u—2 , the strength of different signal

i
components and the short term correlations of the signal components. Signal components can not be multiplied by w;
if their power levels are below af . Even if the mentioned signals are aligned at certain time periods with power levels
above O'i2 , the aligned portions will be subject to multiplication by w, without retaining the integrity of the individual
signal components. Therefore, the desired signal will be multiplied by 1 instead of w; at the output of the multiplier if

its power level is below o7/ .

As mentioned before, the individual weighted paths are not accessible and our access point is the array output
M
y; (n) = z y; (n) + measurement error. Moreover, we are dealing with ultra low signal powers. Therefore, the
j=1
Adaptive Array methods for optimizing the weights w; [14-15] are not directly applicable. In order to use the method
for weight assignment, a vector X will be defined as the input to the array,
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X = | Afy (M) T + 0,24, Ay () F i + 05250y Afyy () F oy + 00 2y |

where the effects of the multiplication reduction factors are included. Let d = §D (n)[1,....1]as the desired signal
estimate vector. The covariance matrix for the vector X becomes

fyzl f/.ll f,uZ o f,ul f/zM
Le-1 fﬂ2 fﬂl f/122 o fﬂZ fﬂM
Ry ~ Az(hszo + Kzl[hg +2h hep Rep o (KT)]+ th] : S : (5.7)
fn T N
g2 0 0 . 0]
0 o/ 0 . O

The minimum mean square error (MMSE) version of the weight vector becomes
Wyse (N) = [Wl(n)' W, (n),..., Wy, (n)]MMSE
=X.d Ry "

The MSINR (Maximum Signal to Interface and Noise Ratio) version of the weight vector becomes
Wising (n) = [Wl(n)! W, () Wy, (n)]MSINR

= Xd R,+N_1 and
R = (X —d X.d)(Xx —d Xd) (5.8)
2 faf, .. fufm] [62 0 0 . 0]
fofu 5 . f.f. 0 o7 0 0
~ A*h | . : o . |+l 0 0 & . O
 fn Fa . N 5 | L0 0 0 . of]

As mentioned before, the desired signal can only be amplified if the noise power becomes lower than the desired
signal power and due to the limitations on the array size, only one path will most likely satisfy the mentioned low
noise power requirement. Moreover, due to the instantaneous noise fluctuations, we have to predict the path
instantaneous noise power for the next update period in order to assign the weights. Therefore, the Adaptive Array
method does not seem to be practical for the ATA preamplifier and another policy is required.

aé/MIX /uiz (n)

A (M) > o7 (n) requirement. A

Letwg, be the minimum weight that is required for the paths that satisfy the
aS/MIX :uiz (n)
A*(M)
requirement for the next update period and to assignw; =1 for other cases. Note that if we set w, >1 for cases where

the noise power is larger than the desired signal power, the signal component would not be amplified, but the noise
component will be amplified. In order to estimate wg, , we assume that only one of the paths satisfies the above signal

good policy would be to assign the weight w, > wg; for transport paths which satisfy the > O'f (n)

requirement and M-1 paths are multiplied by 1.
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The desired signal portion of the array output is equated to the output array noise and the result becomes:

2
W, =M G—(t)—l +1, where o2 (t) = o7 i=
D = , oc°(t)=0(t) fori=1toM (5.9)

A’hg,

The following issues have to be considered for the weight assignment:
1- During an update period, the noise and signal powers for each path have to be predicted for the next update period.
2- The desired signal power is not know, especially at the start of the tracking mode.

The path instantaneous signal and noise powers have to be predicted for the next update period in order to assign the
weights. Due to the use of semi-ballistic nano structures, it can be shown that the for any level of signal power, the
noise statistics are basically pseudo random sequences which can be retrieved by pseudo random noise generating
state machine (see Appendix 1). There are various means of collecting statistics for building the state machine. The
array output is fully accessible and its instantaneous signal and noise powers can be calculated by methods of
stochastic calculus.

At the start of the tracking phase, by setting the weight for one of the paths to a low value of w > 1and the rest of the
weights to 1 and retaining the weight assignment for many cycles, eventually the output signal power is maximized. In

effect, we are simultaneously assuming a large power threshold a2, 14 (n)/A(M ) for detecting the desired signal.

If a minimum level of desired signal quality (metric) is not detected by the post sampling modules, then the threshold
is lowered by increasing the weight for the particular path until the desired signal is detected.

By repeating this procedure for other paths, the statistics of instantaneous noise powerai2 (t) will be approximated for

the different cases of 47 (n) ~ u*(n) signal powers. The Ultra weak signal channel environment is inherently time
invariant, therefore the pseudo random noise state model has to incorporate the different signal power

2
i (n)

O'i2 (n)

conditions. Also, by performing other permutations such as setting 2 or more of the weightsw; to common

“
.

O

values above 1, the approximate multiplication reduction factors f, (4, o, W) can be retrieved as a function of

The assignment of w; > W for transport paths which satisfy the desired signal power threshold and the assignment

2
of w; =1 for other cases is optimum only if ﬂ_z is predicted exactly. As indicated in the next section, the weights for
the operating cycle n will be assigned during n-1 operating cycle by using the a priori estimates 5i2(n) and ﬁiz(n) :
During n-1 operating cycle, a priori estimates 5 (n—1), z°(n—1) and a posteriori estimates & (n—1) and

[Jf (n—1) are also available. Therefore, the following policy for the weight assignment can be used:

M > giZ (n)
A*(M)
2- Assign the weights Wy, > W, >1 in a linear fashion for paths that satisfy the criteria

1- Assign the weightw; > wg, for paths that satisfy the condition

ondt ) <5y < “oo L (o (0,4 ()] (510)

_|52-1) 62 (n-1)| Fm)}l
-1 -z

where y(a7 (), i (n))
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2 ~2
- Z(n
3- Assign the weight w, =1 for paths that satisfy the condition &> (n) > %’;ﬂl')()[l+ y(oZ(n), &7 (N)]

D. Transport Path Base-band Signal Estimation & ATA Cycle Operations

The instantaneous signal and noise powers can be estimated by using the array output measurement and the method of
stochastic calculus. The stochastic differential expressions for the transport paths, weighted transport pathsi (i =1 to
M) and array output become

Sgi (DAt + o, (1)Z, (t)dt = & (t)dt + o, (t)dB, (1) (5.11)
=dL, (t)
y; (Odt =g, (t)dt + o (1)dB; (t)
=dL,; (1)

> £, () (Ot +w, ()0, (t)dB, ()

Y (©dt = g (Ot + Y. 0y (OB, (1)

= i (Ot + o (©IB(Y)

=dL, (t), where o, (t) = [i o (t)}

The terms  and o’ are the drift (instantaneous mean) and diffusion (instantaneous variance) for the respective

stochastic process. The term dB, (t) is the brown motion or Wiener process with variance d °B, (t) = dt . The drift and
diffusion coefficients can be estimated by the work of Ait-Sahalia, Jiang, Knight, Stanton, Chapman and Pearson and

the relevant procedures are outlined in Ref. [39-41].
If the sampled base band version of the weighted path y; (t), i.e. y, (n) were available, then by using numerical
Integration methods such as Trapezoid Law L, (n— j) = 0.5AT (yi (n—)N+y,(n—]j —1))+ L, (n—j—2),the

drift and diffusion parameters 4, (n)and &, (n) of the weighted paths could have been estimated by the following
kernel weighted equations:

i [Lwi (n=§)-L;(—] —1)]Kern

{Lwi (n)_ I-wi (n_ J _1)i|

J=0 hs
Hyi(n) = - - — 612
AT Ke n[ Lui () Lhwi (n—j 1)}
i[Lwi (n—j)-Lu(h—] —1)]2 Kern{ Ly (M) - Lr:vi (n—j —1)}
ofi(n) = = - : s
AT Kern{ L (M) - Lﬁw (n—]j —1)}

where K+1 sampling points have been considered . The smoothing parameter hg =1.06var(L,; ).(K +1)"'° and the
Kern(x) = Exp(—x* /2)/\/5 is the Gaussian Kernel. By knowing the drift and diffusion coefficients of the
weighted paths and the weights w, (n) , the instantaneous noise variance of the paths o” (n) and the effective
instantaneous path signal power (f i M (n))2 could be retrieved. After the measurement of array output, a posteriori
estimates of the weighted transport paths shall be used for the mentioned drift and diffusion calculations.
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The Milstein method [34] for estimating L,,; (n) (ory, (n)) from L, (n—1) (ory; (n—1)) is indicated below:
L, (M) = Ly (N=1) + z,; (AT + o, (n).AB, (n—1) + 0.507; (n)o}, () (ABZ (N —1) — AT (5.13)
=L, (=D + 1, .w(n)g (NAT +w,(n)o, (n).AB; (n-1)
+0.5w, (o, (M)(W; ()] (n) + W, (n)a, () (ABZ (n —1) — AT)

The Brownian increments AB, (n —1) are nearly independent with variance (AB,)* = AT
During the (n-1) period, the a priori estimates for the next period (n) which include the drift z (n), the

diffusion &2 () , the Brownian increment Alg’;i (n—1), and the multiplication reduction factor Eli can be determined

by using either simple predictors at the start of the operation or by using the pseudo random noise Markovian state
models [43-44] (see Appendix I). The weights w; (n) are also assigned at this stage.

The method for estimating the base band signals of the transport paths by measuring the array output is presented here.

dL; (t
After making the measurement from the output of the array y; (n) or equivalently L; (n)due to y; (t) = )

, the

a posteriori estimates for the above terms can be determined. For this purpose, the Kalman filtering method [37] will
be used.

For the Kalman state equation, we regroup L,,; (n) , as follows
L,()=L,(h-)+u, (n-1)+e (n-1fori=1toM (5.14)
Where L,; (n) and L,; (n—1) are the current and previous Kalman process states, respectively. The term u, (n—1) is

the driving function and e, (n—1) is the process noise with variance Q; (n) =e’(n—1) .

u (n-1) = f, .w (A (AT +w, (n)&, (n).AB, (n-1) + (5.15)
+0.5w, (NG, (N)(w, ()] (n) +w, (M, () (AB? (n—1) - AT)
e, (- =[f, w,(ng ©) -, w,(MZ (MIAT +w, ()], (n).AB, (N -1) - &, (n).AB, (n ~1)]

+0.5w, (n)o, (M)W, ()} (n) + W, (n)o, () (ABZ (n ~1) - AT)
~0.5w, ()&, (N)(w, ()& (n) + W, (N, () (AB2 (1 -1) - AT

For the Kalman measurement equation, the array output will be used, as follows:

M
L; (n) = Z L,; (n) +Vv,_(n) where v, (n)is the zero mean measurement noise with variance R(n) = vZ(n)
j=1

By using the a posteriori estimates I:Wi (n —1) of the (n-1) cycle, we obtain the following a priori estimates (or state
project):
L, (n)=L,(n-1)+u, (n—-1)fori=1to M, (5.16)

e =L, (n)- Ewi (n) is the a priori estimate error with variance ﬁ(n) =¢’(n)

e =L, (n)- I:Wi (n) is the a posteriori estimate error with variance Isi(n) =6%(n)

The index n in the variance expressions Q, (n), R(n), ﬁ(n) and I3I (n) implies that the variance estimates were
obtained by using all of the available data up to the nth period.

Is;(n) = FA’I (n—1) +Q, (n—1) is the error variance projection (5.17)
P.(n)

iﬁj (n) + R(n-1)

K,(n) = is the Kalman gain
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After receiving the demodulated and sampled output of the array Y; (n) (or equivalently L; (n) ), the a posteriori

estimates of the weighted path L, (n) become

()= By () + Ky (ML (=Y. By (M), 1= 110 M (5.18)
D)4y ROy ST ()

Y (P (n-1)+Q (n-1)+R(n-1) =

=1

[u—

I3i (n)=(Q1-K, (n))FP;i (n) for the updated variance of the a posteriori estimate error of the weighted paths.

By the knowledge of a posteriori weighted path estimates Ewi (n) , the estimated drift zz,, (n) and diffusion &7 (n) can
be determined by the weighted kernel method of equation 5.12. Since the weights w; (n) are known, the a posteriori
estimates for drift 2z (n) and the product of drift and the multiplication factor fﬂi,[zi (n) can be easily determined by

simple division of z;(n)and &, (n) by the weightsw; (n) .

Then, the process noise estimates can be retrieved by the difference between the a priori and a posteriori weighted path
estimates.

€& (n-1)= I:Wi (n)-— I:m (n) , which can be used to update the process noise variance Q; (n) . (5.19)

The a posteriori estimates of the Brownian increments Aéi (n—1) can be retrieved by using the process noise
estimates in quadratic format, as follows:

& (n-1) =[f, w(ni 1)- T, w () (MIAT +w, (N[5, (n).AB, (1 -1) - &, (n).AB, (n-1)] (5.20)
+0.5w, (), (N(W, ()& (n) + W, (M), (M) (AB? (1 ~1) - AT
—0.5w, (M), (M)W, (N5 (n) + W, (N5, (1)) (ABZ(n ~1) - AT)

The mentioned a posteriori estimates and the a priori estimates will be used to update the drift and diffusion predictors
and the pseudo noise state model. The latest estimate of the measurement noise V, (n) becomes:

9. =L (-3 Ly () 5.21)

The measurement variance R(n) of the array output will be updated by using the measurement noise estimate at the nth
cycle. The block diagram for ATA weight adjustment and update process is shown in Fig 4.

VI- CONCLUSION

Ultra weak signal processing is required for recovering communication signals that have power levels below the noise
floor of the receiver. The concepts can be used for recovering the ultra weak signals for both wireless and wired
media. The signal processing is fundamental in implementing the long awaited Source Separation technology in the
receiver modules for the sake of increasing the user capacity. It also facilitates the deployment of wireless sensors and
actuators for many applications including remote operations. It is interesting to note that the ultra weak preamplifiers
do not require extra bandwidth or transmission protocol modifications for their operation.

Currently, the Adaptive Stochastic Resonance Array (ASRA) is the most flexible technology for implementing the
ultra weak wireless preamplifier module. The preamplifier does not require the internal signal dynamics for its
operation. The array has been successfully implemented for the base band version as Supra-threshold Stochastic
Resonance [16, 17] and its infrastructure is well known. The structure for the additive signals which is dependent on
the transmission protocol can be improved as better algorithms become available. In fact, if programmable module is
used for the preamplifier section, the algorithm modifications for the additive signals, quality measurement and the
adaptive parameter updates can be loaded for improved performance. The excess interference due to the additive
signals can be readily eliminated in the source separation module because the additive signals and their contribution
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to the array output are known.

The ultra weak signal processing provides a dynamic jump in the market for massive communication services.
Moreover, by resolving the signal detection and radio frequency power overloads, there will be a huge market for the
inclusion of wireless modules in almost all of the electronic and electromechanical equipment. Also, the remote
operation facility provided by the signal processing leads to dynamic improvements in production, management,
service offerings, diversified remote inspections, self employment and other areas which lead to economic growth.

During the (n-1) operation cycle, calculate the (n) cycle path a priori estimates for drift ﬁi (n) ,

diffusion &, (N) , Brownian increment AB, (N —1) and multiplication reduction factor f,. by

A

using the (n-1) cycle posteriori estimates, simple predictors, random noise observable
Markovian state machine, paths i=1to M

During the (n-1) operation cycle, estimate the Kalman Filter driving function U, (n —1) , the

path weights W, (n) for the (n) operation cycle, i=1to M

During the (n-1) operation cycle, calculate the weighted paths a posteriori estimates

LWi (n) for the nth cycle by using the driving function and the a posteriori estimates

I:wi (n - 1)

{

During the (n) operation cycle, by using the output of the array, calculate the Kalman filter gain

and the a posteriori estimates LWi (n) for the weighted paths and update the Kalman filter

parameters

A4

By using the a posteriori estimates LWi (n) for the weighted paths, the (n) cycle a posteriori

weighted paths drift £z,; () and diffusion &, (N) terms can be determined by the methods of
stochastic calculus, such as the weighted Gaussian kernel method

y

Estimate the (n) cycle a posteriori drift £z (N), diffusion & (N) , multiplication factor f,. . and

the Brownian increments ABi (n —1) for paths i =1to M, update the array output

measurement noise R(N) and weighted path estimate error Q, () statistics, and update the
pseudo noise Markovian state machine

Fig. 4- Adaptive Transport Array Update Process

Appendix I- Electronic Transport Mechanism

Boltzmann transport equation [45-48] is used for examining the receiver transport and noise mechanism due to its
simple structure. However, for the instantaneous noise power analysis and its pseudo randomness, a simpler method
that is based on stochastic calculus will be employed.

- 1 -
—=V(k)==V, e(k), 1.1
pm (k) =V (k) (1)
where X is the electron position, V is the electron drift velocity, K is the wave vector, g(IZ) is the energy vector,

Eer (X,1) = E i (X,1) + By Vaias» Franx (S (1), Sy (1)) (1.2)
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where the internal field E,m (X,t) is generated by internal forces and density profiles

dp dk = =
=h—=—QE. +F,, 1.3
dt dt q Eff r ( )
where p is the momentum, EEﬁ is the effective electric field, Ifr is the random impulse force on electron due to

scattering and it is given by

IEr =zhui5(t_ti)={ﬁ7’+ 'Ero’ (1.4)
whereﬁ» is the momentum driven drag force and Ifr0 is the zero mean fluctuating force.

{F.}= [aW (K,k +0)dd ~ -2(0)m,V and (1.5)
O~

where B, is a zero mean Wiener process, o? (Ifr) is the variance of the random scattering force on the electron,
A(K) is the scattering rate for the electron wave vector (k) , and W (k,, k') is the transition rate satisfying

A(k) = J.W (k,k"dk", 1(0) = 1/7,, wherez, is the average time between collisions

Therefore,

(1.6)

A(E)At is the probability that a jump in momentum will occur in a small time interval At and if a scattering event has
occurred at timet; Izi = IZ(t.') and IZ. +U0, = IZ(tr) , then the probability distribution function for the amplitude of
W (kl ] + lj|)

(k)
Note that for a conduction path, there is a correspondence between the scatterings and a Markovian state transition
probability model. The momentum jumps in a given time frame indicate transitions into new states. For semi-ballistic
transport, the number of Markovian states is limited, because the scattering rate is lower with respect to non-ballistic

transport and depending on the relaxation time period, there is a tendency for electron distribution to return to
equilibrium.

the jump would be p, (U;) =

Even though there is a weak dependency between the signal power and the noise power transitions, it is customary to
model one state machine for a range of average signal power to noise power ratio. Let g :{Sp,, Sp,,..., Sp,_} be the L
Markovian states for a noise analysis of a simple transport path for a known range of signal to noise power ratio and

let{c, (E), a, (E), .., a, ()} be the V possible noise power symbols which are normalized with respect to the

average noise power o/, .

The Markovian state machine [43,44] is modelled by optimizing the observable symbol probability distributions,
b; (k) =Pr{e, (c?) attime period n| q(n) = Sp;}forj=1toL and k =1to V and the state transition distributions

a; (k) =Pr{g(n+1) = Sp, | g(n) = Sp;}fori, j =1 to L. In practice, the Markovian state machine is constructed by

indirect noise power measurement during each measurement sampling period. Therefore, the Markovian transitions
are modelled discretely with the same time frame as the measurement sampling period. If the measurement sampling
period is AT, the probability of electron scattering in time period AT is specified below,

Pr{(t, -t,,) <AT}=1- exp{—J‘:"MT A(IZ(t ))dt'}. (1.7)
The Boltzmann Transport Equation (BTE) is given by the expression,
W +V(K).V, f(%,k) —%EEﬁ (X,0).V, f(%,k) = j f (X, k)W (K, K)dk’ = A(K) f (%, k) (1.8)

—lIZZ:aka [O'U(k)f(X k)]——V [E{F.} (%, k)]

i,j=1
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where f (X, k) is the electron distribution function, g is the electronic charge and o (k) ju u. W(k,, .+ U, )dd;

The current longitudinal noise auto covariance function can be retrieved as the transient solution of BTE, subject to
the following special initial condition,

FRKD)| L, =(K)-<V>,)fs (%K), (1.9)
where fg (X, K) iis the steady state solution of the electron distribution function and < V >y = JV(IZ)fSS (X, IZ)dIZ :

Typically, the Fermi distribution is used for the steady state electron distribution,
foo (X, k) =[exp(e(k) — 1, )/ K T +1]7", where K is the celebrated Boltzmann constant and T is the

Temperature.

The current noise auto covariance function becomes

K, (%,1) o< g” [V(K) f (X, K, )k, t>0

D, (X,w) oc I K, (X,7)e™"dr is the current density noise power spectral density with the average noise power of
d,(X,0).

For ballistic transport, the average current noise power at room temperature is given by8KBTq2.TTR /h , Where T, is

the ballistic net transmission coefficient. For semi-ballistic transport, there is a partial contribution of the non-ballistic

4K, T.L
current noise power density of B where rf = 1/ A2 (0) is the square of the average time between

(L+w?zf )ngu, A
collisions (relaxation time), A is the cross sectional area of the conduction path, L is the length of the conduction path
4K T.L

nqu,A

and g, is the electron mobility. The average current noise power for non-ballistic transport path is

For the instantaneous noise power analysis, the force equation is transformed into stochastic differential equation,
dp . dk av(k) _ _ . .dB
—=h—=m —qE +F =—QE —A0)mV +o(F,)— 1.10

m,dV = (-qE o, — A(0)m,V)dt + o (F, ) dB,

For the weak dependence of the noise velocity V,, on the external electric field E g (Vy.cr fyux (Sp (1), S,y (t)) and the
mean fluctuation force, and the relatively strong dependence of the noise velocity to the internal electric field
]:Z,m(f(,t) , the coefficients a,, ay,and a,, are used in the following approximation,

_anlEInt(Xlt)_anZEExt —aNs/l(O)meVN dt + O-(lfr) dB, (1.12)
m m

e e

v, =

= u(V,,)dt + o(F o7 g
m

e
The instantaneous noise powera,i (t) in the transport path direction with noise velocity v, is approximated by the

following expression,
ol (t) = C,q°n’v: , where C, is a constant, q is electronic charge and n is the electronic density

By using stochastic calculus,

2 2 2/ 2 =
do? ~ doy u(v,)+0.58 In G (ff) dt + doy RGP (1.12)
| dvy dv,> m; | dvy m,
. o] .
~|2C,q*n?v, u(v,)+C,q°n’ (ZF) dt+{2CNq2n2vN.ar(r::r)}dBI = u(ol)dt +¢(of)dB,
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The pseudo randomness of the instantaneous noise power 7. (t) is evident from the drift contribution z(o 7 ) and the
Markovian state machine can be constructed by limited states due to semi-ballistic transport and relatively lower
variance of the random scattering o> (Ifr) :

The Markovian state machine parameters, i.e. observable symbol probability distributions, b; (k) and the state
transition distributions a;; (k) are related to the time evolutionary Fokker Planck probability distribution P(cf 1),
P (ol 1) 0 o°
= = ——— [0y )P (0 )]+ 05— [5(a)P(oy )] (1.13)

ot ooy 80‘,3,
The Milstein method [34] for estimating &/ (n) from o5 (N —1) is expressed below:
o2 (n) = o2 (n-1) + u(cl ,NAT +¢(o2,n).AB (N 1) + 0.55(c2 )¢’ (c3,n) (ABZ (N-1) AT ) (1.14)
where the derivative is performed with respect to time.
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