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Abstract 
Adaptive Stochastic Resonance Array (ASRA) along with Adaptive Transport Array (ATA) preamplifier modules are 
exploited for ambient temperature (non-cryogenic) receiver front end recovery of Ultra Weak  narrowband or 
wideband wireless signals which are subject to co-channel interference.  The ASRA method uses pass band external 
additive or injecting signals in a weighted array framework for boosting the ultra weak wireless signal and the ATA 
method relies on instantaneous noise power analysis on a weighted array transport paths. The ASRA method is 
especially applicable for compact wireless devices such as wireless handsets and sensors, where the facilities for 
conventional antennas or Cryogenic setups are not available, but the ATA method requires further investigation before 
actual implementation. The preamplifier methods are insensitive to the transmission protocol and modulation scheme 
and they do not require extra bandwidth for their operation. The standard signal processing concepts such as mutual 
information stochastic resonance quality measures, gradient ascent and stochastic annealing, Kalman filtering and 
stochastic calculus have been used for updating the array weights or the injecting signal parameters.   
 
I- Introduction 
 
This presentation focuses on Adaptive Stochastic Resonance Array (ASRA) and Adaptive Transport Array (ATA) 
preamplifiers for the detection of ultra weak signals. The ultra weak signals are defined as desired signals that have 
receiver power levels below the noise level (floor) and ultra weak signal preamplifiers are employed before the LNAs 
at the wireless receiver in order to boost the desired signal power to levels above the noise floor. Section 2 provides a 
brief introduction on different ultra weak Signal handling modules. In section 3, a simple mathematics of ultra weak 
signal condition is presented, within the framework of traditional modulation format. Section 4 is devoted to Adaptive 
Stochastic Resonance Array (ASRA) preamplifier and it covers the architecture, resonance quality measure, weight 
and injecting signal controlling parameter update methods and the array performance. Section 5 is allocated to 
Adaptive Transport Array (ATA) preamplifier and the section covers the architecture along with the array weight 
assignment and cycle operation. Concluding remarks are included in section 6. 
 
Ultra weak or sub threshold wireless signal processing is a fairly new branch in electronic communication and it came 
into existence for the fundamental objective of increasing the capacity of wireless users. The signal processing relies 
heavily on nano technology and semi ballistic electronic transport mechanism.  
 
In order to increase the capacity of wireless users, the co-channel Signal Source Separation technology was developed 
to allow for the co-existence of wireless signals (of the same or different transmission protocols) in the same radio 
frequency band without increasing the band width. Moreover, many of the radio bands have been opened up for 
unlicensed operation and there is also a desire to increase the transmission distance or relax the line of sight 
requirements for microwave and millimeter wave bands. 
 
However, the increase in the number of wireless transmissions with the conventional transmission power levels leads 
to wireless r.f. (radio frequency) power overloads. In fact, the standards for adding Source Separation modules to the 
wireless sets are subject to resolving the side issue of the r.f. power overloads.  
 
The overload is an environmental health threat which can only be compensated by reduction in wireless transmitter 
power. Unfortunately, for a given transmission distance, the power reduction in wireless transmitters leads to 
attenuated signals with levels below the noise floor at the receiver. By employing multiple micro-cells and relays in 
the transmission path, it is possible to lower the transmitter power of the end users and have normal reception. In this 
case, the relays can communicate with other relays by a combination of terrestrial cabling and airway retransmissions.  

If the relays use airways for the retransmission of signals, the r.f. power overload would still persist because the same 
amount of r.f. power is contributed to the overload. The r.f. power overload can be partially compensated by cabling 
and in fact, cabling is encouraged because it provides a redundant backup for portions of wireless networks. However,               
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for reliable systems, cabling is not sufficient due to the terrestrial pathways and accessibility problems and a fully 
wireless system becomes mandatory in order to retain the reliability. Therefore, we still have to resolve the problem of 
detecting the attenuated wireless signals.   
 
The problem of signal detection is compounded by the fact that the compact wireless modules that are used for 
personal communication or sensors do not have the necessary antenna power gains that are available to cellular, relay 
stations or fixed wireless components. Therefore, considering all of the mentioned factors, the Ultra Weak Signal 
Processing is ultimately required for detecting the wireless signals at power levels below the noise floor. 
  
The ultra weak signal processing is basically required for the following reasons: 
 
1- To detect wireless signals that are attenuated at levels below the noise floor due to low transmission    
     power, long transmission distance, obstructions in indoor environments, etc. 
 
2- To increase the transmission distance for wireless networks that have been traditionally used for short   
     distances without increasing the transmission power 
 
3- To allow for the deployment of massive wireless sensors and their networks at ambient temperature     
     conditions 
 
4- To increase the capacity for wireless service by operating in a low r.f. power environment and by   
     eliminating the r.f. power overload 
 
 5- To allow for the inclusion of signal source separation modules in the wireless sets    
 
 
II- Ultra Weak Signal Handling Modules or Options for Compact Wireless Sets 
  
1- Nano Antennas  
 
Nanotube antennas can be used to couple the external electromagnetic energy to the receiver front end [1]. They are 
extremely critical for the implementation of wireless hand set adaptive antenna array module. 
 
2- Compact Nano Cavity Pre-amplifier  
 
Space charge wave propagation theory of Hahn and Ramo [2],[3] can be employed on nano-cavities in order to 
amplify the ultra weak signal from the antenna ports. Each antenna port is connected to a compact nano cavity. In the 
cavity, an electron drift space can be set up by a coupled controlling D.C. electric field. By matching the group 
velocity of the weak signal field to the drift electron velocity through proper nano-cavity design, the kinetic energy of 
the drift electrons can be transferred to the ultra weak r.f. signal, which leads to signal amplification. The amplified r.f. 
signal is collected in a Catcher cavity.   
 
Theories and approaches are available for confining and guiding electromagnetic energy through narrow channels with 
sub-wavelength transverse cross sections [4],[5]. The near zeroε ENZ materials have interesting potentials in 
efficiently squeezing and transmitting energy through narrow sub-wavelength region and effectively providing super-
coupling between ports and/or waveguides. The ENZ materials can be properly synthesized at the desired frequency 
by embedding suitable inclusions in a host medium.  
 
Also, Metal-Dielectric-Metal (MDM) structures with a dielectric region thickness of ~100 nm supports a propagating 
mode with a nanoscale modal size at a wavelength range extending from zero-frequency (DC) to visible [6]. 
 
3- Direct Electronic Noise Reducing Preamplifier 
 

Although at a preliminary research stage, it is possible to reduce the intrinsic noise of the primary conduction path of 
the receiver (after the antenna ports) by reducing the electron-electron and electron-phonon scattering. In [7], coupled 
quantum dots in phonon cavities have been used to detect phonon quantum size effects in the electron transport. The                
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 quantum phase of an electron is randomized by inelastic scattering events with other electrons or with lattice 
vibrations (phonons). By tuning the dot level splitting via gate voltages, piezo-electric or deformation potential 
scattering can be drastically reduced.  
  
4- Stochastic Resonance Preamplifiers 
 
The Stochastic Resonance (SR) pre amplifier can be used for the detection of ultra weak narrowband or wideband 
wireless signals at ambient (non-cryogenic) temperature conditions. The sub-threshold signals can be detected at the 
receiver front end by externally injecting random signals and / or manipulating the internal noise level of the receiver 
front end. The SR methods do not require any extra bandwidth or any modification on the transmission protocol and 
they have a high degree of design flexibility for recovering the sub threshold signal. 
 
A SR quality measure between the desired signal(s) and the SR output such as mutual information or normalized cross 
correlation is estimated based on either the modulation format or the reference sequences or the retrieved signals from 
the Source Separation module. Based on the SR quality measure, the injecting signal probability distribution 
parameters or signal formats are adaptively modified in order to increase the SR quality measure. The plot of the SR 
quality measure with respect to the adjusting parameter of the additive signal (or signals) resembles a resonance curve 
and the peak signifies the optimum operation point or resonance quality measure.[13, 21-31] 
 
5- Adaptive Transport Array Preamplifier 
 
This preamplifier is a recent addition to the ultra weak signal pre amplifier technology. At this primitive stage, it can 
not be practically implemented in the compact wireless set and it requires further research for optimizing and reducing 
the number of arrays.  
 
Basically, the primary conduction path after the antenna / cavity port is divided into several weighted paths and the 
weighted paths are added to form an array. The instantaneous noise power of each path is estimated with respect to the 
desired signal power by using the output of the array which is accessible. During each update period, those paths that 
have instantaneous noise levels below the signal level will be heavily weighted and the other paths will not be 
emphasized. Effectively, the desired signal is captured at all times.  
 
6- Signal Source Separation Modules  
 
The Signal Source Separation (SS) modules [8-12] basically separate the desired signal from interfering signals by 
novel methods such as blind source separation which is related to the Independent Component Analysis and mutual 
information minimization methods. 
 
The SS technology allows different interfering users to use the same or different transmission protocols in the relevant 
common frequency band with out increasing the bandwidth. The SS technology can distinguish signals that have 
different modulation format or signals that have the same modulation format but with different transmission protocol. 
But for signals that have the same transmission protocol and are not subject to a cellular subscriber assignment, either 
intrinsic identifying signal coding / transformation or Reference / Wireless Network Identification sequences should 
be available in order for the Source Separation module to identify the desired signal. 
 
In spite of the advancements in SS modules and the increase in wireless capacity, the standards for adding SS modules 
to the wireless sets are subject to resolving the side issues such as the environmentally important wireless r.f. power 
overloads. 
 
III- Ultra Weak Signal Condition 
 
In this presentation, we will use the traditional 2 dimensional constellation type where the possible modulation signal 
set is specified by a discrete points, states or centroids Ks , k = 1 to Z in a normalized constellation space. The 
concepts in this presentation can be extended to advanced modulation formats as long as proper distance metrics are 
defined for the modulation points or states. 

[ ]{ }tjw
QRIRR

cetjStStS )()(Re)( += , where )(tSR is the received signal from an antenna port                          (3.1) 

)sin()()cos()()( twtStwtStS cQRcIRR −= , ( ))(),()( ,,,, tStSftS QIINQDIQIMIXQIR = , )(, tN QI = )()( ,, tZt QIQIσ , 
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where )(, tS QIR , )(, tS QID , )(, tS QIIN , )(, tN QI  are respectively, the base band versions of the received, desired, 
interference and the noise signals. I and Q are the typical inphase and quadrature components of the signals. The term 

)(, tQIσ is the diffusion term and )(tZ is the white noise random signal with unit variance. The term 

( ))(),( ,, tStSf QIINQDIMIX  denotes the mixing operation between the co-channel desired and interfering signals. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the simplest time invariant channel model, the baseband received signal can be represented by the following 
expression, 

( ))(),( ,,, tStSf QIINQIDQIMIX  

)()()()()()( ,

1

1
,, tsthkTtsthtsth QIININ

Lc

K
QIDKQIDSD +−+= ∑

−

=

                                                                               (3.2) 

where the )(ts terms have unit powers and the coefficients )(th vary slowly with respect to the associated )(ts . The 
first and second terms represent the desired signal and the delayed ISI signals, respectively. The term )()( , tsth QIININB  

represents the sum of the co channel interfered signals. The recovery of the desired )(, tS QDI signal(s) by analog and 
post sampling signal source separation or co-channel interference reduction modules 
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is denoted by the operator ( )SSf
∧

. However, the signal recovery can be performed by conventional means only if the 
desired signal )()( , tsth QDISD power is equal or above the noise floor. 
 
The Ultra Weak Wireless Signal is defined by the condition 

[ ] )()()( 2
,

2
, tNtsth QIQDISD <                                                                                                                                    (3.3) 

which implies that the signal power [ ]2, )()( tsth QDISD is below the noise floor. Note that the received signal )(tfMIX  
may have average power levels above the noise floor, but the desired signal average power could still be below the 

noise floor. The power ratio for the desired and total received power is denoted by 
[ ]
[ ]2

2
2
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By employing Ultra Weak wireless signal processing via ultra weak preamplifiers or other means, the desired signal 
average power would become greater than the noise floor and the source separation modules would be able to operate. 

By labelling the Ultra Weak signal processing (or pre amplification) by an operator ( )UWf
∧

, where 

))](,))(),(([( ,,, tNtStSff QIQIINQDIMIXUW

∧

would have desired signal power above the noise floor, the recovered 
signal which is generated by the source separation module becomes: 

))](,))(),(([()(ˆ ,,,, tNtStSfffns QIQIINQDIMIXUWSSQDI

∧∧

= , 

The recovered signal is either mapped to a modulation constellation point, state or centroid Ks , k = 1 to Z or it is the 
constellation point itself, depending on the source separation method. The received signal data points are usually 
corrected by using the information from channel decoding and other modules. 
 
 
IV- Adaptive Stochastic Resonance Array (ASRA) Preamplifier 
 
A. ASRA Architecture 
 
The ASRA method focuses on the pass band stochastic resonance external additive or injecting signal option for 
boosting the ultra weak or sub threshold signal. The ASRA method (Fig. 2) is the simplified extension of the 
combined Adaptive Stochastic Resonance [13], Supra-threshold Stochastic Resonance [16,17] and Adaptive Array 
[14,15] methods for processing modulated Ultra Weak wireless signals at the receiver. 
 
As shown in Fig. 2, an array is formed by dividing the received signal from the antenna or the nano-cavity port into M 
transport paths. In each transport path (or array element) i, an additive random signal )(tSi with certain probability 
distribution is added to the received signal and the path is emphasised with weight multiplier )(twi . The multiplication 
is performed by a semi-ballistic nanostructure Gilbert cell such as nano FET Gilbert cell transistors with the minimal 
amount of field (voltage) to transport (current) translations [18,19]. Due to the ultra weak signal condition, the in 
phase and quadrature components are not usually implemented at the multiplication stage. Therefore, the weights 

)(twi are usually not separated into I (in phase) and Q (quadrature) components.  
 
The additive signal ),,( iii tS ξϑ

rr
is a random signal which is modulated in the same format as the desired signal and it 

possesses a probability distribution ));(( ii tSp ϑ
r

 with controlling distribution parameters iϑ
r

 and controlling 

modulation parameters iξ
r

 for the additive signal modulated format. The additive signal tries to imitate the desired 
signal )(tsD or at least tries to produce a signal which is aligned with the desired signal in order to boost the desired 
signal power to levels above the noise floor. Basically, the aim is to modify the additive signal probability 
parameters iϑ

r
such as the square root of the variance ))(( tSiσ and to modify the additive signal modulation parameters 

iξ
r

such as phase ))(( tSiθ in order to increase the correlation coefficient  
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)().(
))(),((

22 tSts

tSts
tStS

iD

iD
iD =ρ  between the desired and additive signal or to equivalently decrease the average 

phase difference between the two signals. 
 
It is not possible to track the desired signal adaptively by only using one additive signal at all times. Therefore, 
diversity is employed by using weighted M additive signals, )(tsi with i = 1 to M and by adjusting the controlling 
parameters of the M injecting signals )(tSi in order to maximize the correlation between the desired signal and the 
output of the array )(tyT . In fact, it can be shown that the desired signal can be presented by a weighted mixture of 
random signals with different probability distribution or by signals that have the same p.d.f. format but with different 
parameterization, such as the weighted Gaussian distribution [20].  
 
The maximum correlation between the desired signal and the array output is achieved indirectly by comparing the base 
band version of the array output )(nyT with the modulation states during tracking or the desired signal 
estimate )(ˆ nsD during normal operation, calculating a SRQM (Stochastic Resonance Quality Measure), and by 

modifying the distribution parameters iϑ
r

 and controlling modulation parameters iξ
r

of ),,( iii tS ξϑ
rr

, in order to 
maximize the SRQM. The plot of the SQRM verses the injecting signal modifying parameter such as the signal 
deviation resembles a resonance curve. The signal power of the array output will have power levels above the noise 
level. Therefore, the ASRA pre amplifier output can be processed by the Source Separation modules in order to 
estimate the desired signal. 
 
The conduction path segment )(tSR from the output of each antenna or the nano-cavity port is divided into M equal 
size transport paths )(tSRi , i=1 to M having the following in-phase and quadrature base band format: 
 

)sin)(cos)()(()( iRQiRIiIRi tStSMAtS θθ −= ,                                                                                                  (4.1) 

)cos)(sin)()(()( iRQiRIiQRi tStSMAtS θθ +=  for i = 1 to M 

The terms )(MAi and iθ are the attenuation and the phase shift angle for each transport path due to the division. The 
phase shift is usually neglected up to the microwave range, but it may be considered for the millimeter wave bands. 
 
The mentioned terms can be determined from the geometry of the transport path division during actual 
implementation. 

)()()( ,
1

,, nvnyny QI

M

j
QIjQIT += ∑

=

,                                                                                                                         (4.2) 

where )(, ny QIT is the sampled in phase & quadrature equivalent base band presentation for the array output, 

)(, nv QI is the measurement error for the array output and  

( ))]()()().([),()( ,,,,, nNnSnSMAnwgny QIiQIiQIRiiQIiQIj ++=                                                                        (4.3) 

 is the sampled weighted base band format for the array components, i = 1 to M and )(, nN QIi  is the equivalent 

baseband presentation of the transport path noise )(tNi  before the multiplication. 

)()()()()()()( ,

1

1
,,, nsnhknsnhnsnhnS QIININ

Lc

K
QIDKQDISDQIR +−+= ∑

−

=

                                                             (4.4) 

is the equivalent base band presentation for the received signal, and the function ( )QIig ,  is used to signify the fact 
that the multiplication does not preserve the signal linear format because there may be desired signal or interfering 
signals components that have power levels below the noise floor and would not be amplified by the weights. 
 
For each path, the injecting signal )(tSi can only be a partial duplicate of the desired signal )(tsD  and therefore, 
portions of the desired signal would still have power levels below the noise floor. Therefore, by using the term 

)(, nx QIi  for the equivalent base band presentation of the multiplier input, the multiplication function ( )QIig ,  
satisfies the following condition, 
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( ) )().()(),()( ,,,, nxnwnxnwgnx QIiiQIiiQIiQIi ≤<                                                                                                 (4.5) 
 
Aside from the multiplication reduction, it is difficult to analyze the system dynamics directly due to the complexity of 
the internal noise mechanics and the difficulties in estimating the misalignment of interfering signals, injecting signal, 
and the internal noise signal with the ultra weak desired signal for each array element. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, we will resort to adaptive methods and the data samples that are available during tracking and acquisition in 
order to estimate the Stochastic Resonance Quality Measure (SRQM) and to modify the distribution parameters iϑ

r
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and controlling modulation parameters iξ
r

of ),,( iii tS ξϑ
rr

.The SRQM correlates the base band version of the array  
output )(, ny QIT  and the desired signal. The base band version of the array output )(, ny QIT is always available, but 

the desired signal estimates )(ˆ nsD become available by the Signal Source Separation module 

( ))()(ˆ ,, nyfns QITSSQID

∧

=  only after an initial successful operation of the ASRA preamplifier. Therefore, during the 
signal tracking mode, the modulation signal set (constellation points) itself will be used to optimize the parameters of 
ASRA.   
 
B. ASRA Quality Measures 
 
The Stochastic Resonance Quality Measure (SRQM) which is basically a measure of the correlation between the array 
output and the desired signal is maximized by adjusting the pdf parameters of the injecting signals such as the variance 
and by adjusting the injecting signal modulation phase. In the adaptive scheme, the quality measure is estimated 
during each operation cycle in order to examine its gradient. The SRQM [21-23] can be estimated by many methods 
but the focus in this presentation will be on Standard Mutual Information and Quadratic Mutual Information method. 
The Normalized Correlation measure and other methods will not be covered. By estimating the SRQM, we have 
virtually alleviated the requirement for examining the internal dynamics of the ASRA preamplifier. 
 
1- Standard Mutual Information 
 
Standard Mutual Information can be used as a measure of Stochastic Resonance without the requirement of desired 
signal estimates )(ˆ , ns QID and it is usually employed at the tracking phase, where the Source Separation module is not 
operating. This SRQM which is dependent on the modulation format and the constellation assignment will activate the 
ASRA so that the Source Separation Module can extract the desired signals.  
 
The source separation technology allows different interfering users to use the same or different transmission protocols 
in the relevant common frequency band. If there is an cooperative channel agreement to use the same modulation or 
transmission protocol, then either intrinsic identifying signal coding / transformation or Reference / Wireless Network 
Identification sequences should be available in order for the Source Separation module to identify the desired signal. If 
intrinsic signal coding is used to identify the desired signal, the SRQM operates by using the modulation format and 
the Source Separation Module will extract the desired signal. If reference or identification sequences are used to 
distinguish between users, the ASRA and Source Separation modules will try to lock to the sequences at the tracking 
phase.  
 
The standard Mutual Information measure requires only the knowledge of the sampled base band version of the array 
output )(, ny QIT  and the modulation format in the form of signal constellation or centroids or states. The sampled 

)(, ny QIT are assumed to be properly scaled to match the signal constellation format. Let Y be the set for the array 

output with elements )(, ny QIT , and let S be the set for the desired signal possible points on the modulation 

constellation or states or centroids with elements ),( QKIKK sss = , k = 1 to Z. The probability distribution for Y, 
p(y) can be represented in either discrete or continuous format.  
 
For continuous presentation of Y, the standard mutual information is  
 

∫ ∑
=

=
Y

Z

k k

k
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1 )()(
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                   ∫ ∑
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For discrete presentation of Y with N+1 samples, the standard mutual information becomes 
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= = −

−
=
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Z
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k
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In general, Zsp k /1)( = and by using the Parzen Window method for N+1 samples of Y, the probability distribution 
function for Y which will be available in time period n will be 

∑
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where the Gaussian Kernel is defined as 
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and the conditional densities are 
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Note that we have not used any reference data or the estimated desired signal )(ˆ , ns QID from the Source Separation 
module. The Quadratic Mutual Information and Normalized Correlation methods that are covered in this presentation 
will use the estimated desired signals )(ˆ , ns QID along with the ASRA outputs )(, ny QIT .   
 
2- Quadratic Mutual Information 
Inspired by Renyi's quadratic mutual information measure, researchers have come up with other information theoretic 
distance measures to estimate the mutual information. Let Y be the set for the array output with elements )(, ny QIT , 

and let S be the set for the estimated desired signals )(ˆ , ns QID generated by the source separation modules. The Cauchy 
Schwartz quadratic Mutual Information [23] (CS-QMI) measure which is based on the Cauchy-Schwartz inequality is 
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The mutual information is simplified by using the Parzen window method with the Gaussian Kernel for the joint and 
marginal distributions. 
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The CS-QMI measure is reduced to the following expression, 
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where the variables ),( ysv , )(1 sv , )(2 yv and ),( ysvnc are defined below:       
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C. ASRA Weight and Injecting Signal Controlling Parameter Update 
 
1- Adaptive Controlling Parameter Estimation 
 
By using the estimates of the Stochastic Resonance Quality Measure (SRQM) and other information [24], it is possible 
to update the weights )(nwi of the array, the controlling distribution parameters iϑ

r
 and the parameters iξ

r
of the 

additive random signals ),,( iii tS ξϑ
rr

with probability distributions ));(( ii tSp ϑ
r

. The general terminology )(, nI YS will 

be used instead of ),( YSISTD and ),( YSICS to indicate the measured SRQM between the array output )(, ny QIT and the 

desired signal )(, tS QID at the update period n. The usual probability distribution controlling parameter is the square 

root of variance or deviation ))(( tSiσ .  
 
The gradient of the quality measure with respect to the array weights is approximated by the following expression: 
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where )(ˆ ky Ii and )(ˆ ky Qi are the in phase and quadrature a posteriori estimates of the weighted array components. We 
assumed that the gradient with respect to the in phase and quadrature components of the weighted paths will move in 
the same direction due to the fact that desired signal in phase and quadrature components experience the same channel 
conditions. However, if that is not the case, then the methods for multiple optimizations [32-33] should be employed. 

The terms 
QIi

QIT

y
y

,

,

Δ

Δ
 can be estimated from )()()( ,

1
,, nvnyny QI
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, as follows: 
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The gradient of the quality measure with respect to the injecting signals )(tSi probability distribution controlling 

parameter QIi ,ϑ belonging to iϑ
r

is approximated by the following expression: 
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The simplest form for updating the weights )(nwi and the injecting signal probability distribution controlling 

parameters QIi ,ϑ  such as the deviation ))(( tSiσ belonging to iϑ
r

would be the following steepest ascent expressions: 
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QIi

YS
QIiQIiQIi

nI
nnn

,

,
,,,

)(
))(()1()(

ϑ
ϑηϑϑ

Δ

Δ
+−=  

              ( )TnBnnnBn QIiQIQIiAnnQIiAnnQIiQIQIiAnn Δ−Δ′+Δ+ ))(())(())((5.0))(()).(( ,
2
,,,,,, ϑϑσϑσϑϑσ  

                                                                                          -10-        



where ))(..(nη are the gradient adaptation factors, ))(...(nAnnσ are the stochastic annealing coefficients, the Brownian 
increments ))1(..())(..())(..( −−=Δ nBnBnB , ))(..(nB are Brownian motion white Gaussian noise generators with 
unit variance, and ))(..(nAnnσ ′ are the annealing coefficient discrete derivative with respect to time increment 

TΔ between samples. The annealing terms [34-36] were included to escape from local maximum points.  
 
The gradient of the quality measure with respect to the injecting signals )(tSi controlling modulation parameters 

iξ
r

such as the modulation phase is analyzed after the procedure for estimating the pre weighted array components. 
 
2- Base band equivalent signal estimates for the weighted and pre-weighted array components 
 
In order to use the mentioned simple updates or to use more advanced formats, the estimates for the weighted array 
components )(ˆ , kny QIi − , k = 1, 2, … are required. Moreover, better estimates for the gradients and other updating 

procedures can be used if the pre weighted array path components )(, knx QIi − can also be estimated. For this 

purpose, we use the relationship between )(, ny QIi and the available injecting signal sampled base band 

format )(, nS QIi along with the sampled base band version of the array output )(, ny QIT .  
 
As mentioned before, for each transport path, the desired signal or interfering signal components still have power 
levels below the noise floor even after the addition of the injecting signal. Therefore, only a portion of the pre 
weighted signal )(, nx QIi would be amplified by the weight )(twi and the rest would not be amplified. If 

)(, nQIiα denotes the fraction of )(, nx QIi  that is amplified by the weight at the operation cycle n and by assigning 

)()().()( ,,, nNnSMAnB QIiQIRiQIi += ,  the weighted array element becomes 

( ))]()()().([),()( ,,,,, nNnSnSMAnwgny QIiQIiQIRiiQIiQIi ++=                                                                      (4.17) 

             ( ))(),( ,, nxnwg QIiiQIi=                

             ( ) ( )( ))()()(1)()()()( ,,,,,, nSnBnnSnBnwn QIiQIiQIiQIiQIiiQIi +−++= αα  
 
By defining further variables,  

)()()( ,,, nBnnD QIiQIiQIi α= and ( ) )()(1)( ,,, nBnnC QIiQIiQIi α−= ,                                                                  (4.18) 

( )( )( ))()()(.)()()(1)( ,,
1

,,,, nCnDnwnCnDnSny QIiQIiiQIiQIiQIiQIj +++= −  

 and by using the available array output )()()( ,
1

,, nvnyny QI

M

j
QIjQIT += ∑

=

, the required weighted array 

estimates )(ˆ kny Qi − , k = 1, 2, …can be determined indirectly by estimating the variables )(, nD QIi and )(, nC QIi . 
 
The extended Kalman Filtering method [37] can be used to estimate the variables )(, nD QIi and )(, nC QIi . For 
simplicity, the I and the Q subscripts will be emitted.  
 
Let )](...)()([)( 21 kDkDkDkD M= and )](...)()([)( 21 kCkCkCkC M=  be the vector format for the mentioned 

variables. Also, let )](ˆ...)(ˆ)(ˆ[)(ˆ
21 kDkDkDkD M=  and )](ˆ...)(ˆ)(ˆ[)(ˆ

21 kCkCkCkC M=  be the vectors for the a 

posteriori estimates with the corresponding a priori estimates )(~ kD and )(~ kC and update matrices 1DΛ , 2DΛ , 1CΛ  
and 2CΛ . The simplest a priori update mechanism is 

)2(ˆ)1(ˆ)(~
21 −Λ+−Λ= nDnDnD DD , )2(ˆ)1(ˆ)(~

21 −Λ+−Λ= nCnCnC CC , and Kalman Filtering can be used to 

calculate the a posteriori estimates )(ˆ kD  and )(ˆ kC . 
 
The KFPE (Kalman Filter Preliminary Equations) are listed below: 

( )( )( )∑
=

−
+++=

M

j
jjjjjjT nCnDnwnCnDnSny

1

1
)(~)(~)(.)(~)(~)(1)(~                                                                      (4.19) 
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as the a priori estimate of the array output 
 

)1())1(ˆ)(()(~)( 1 −+−−Λ+≈ nwnDnDnDnD DD ,                                                                                          (4.20) 
where )1( −nwD as the process noise with covariance )1( −nQD , 
 

)1())1(ˆ)(()(~)( 1 −+−−Λ+≈ nwnCnCnCnC CC ,                                                                                           (4.21) 
where )1( −nwC as the process noise with covariance ),1( −nQC  
 

)())(~)(()(~)( nvnDnDHnyny DDTT +−+≈ ,                                                                                                   (4.22) 
where )(nvD as the measured noise due to )(nD contribution with variance )(nRD , 
 

)())(~)(()(~)( nvnCnCHnyny CCTT +−+≈ ,                                                                                                    (4.23) 
where )(nvC as the measured noise due to )(nC contribution with variance )(nRC , 
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)(
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ny

nH
M

TTT
C                              (4.24) 

are respectively the Jacobians of the array output with respect to )(nD evaluated at )(~ nD , and )(nC evaluated at 

)(~ nC . 

( ) ( ) ( )( )12
)(~)(~)(1)()(~)(~)()(~)(~)(

−−
+++++−= nCnDnSnwnCnDnwnCnDnSH iiiiiiiiiiiD                          (4.25) 

( ) ( ) ( )( )12
)(~)(~)(1)(~)(~)()(~)(~)(

−−
+++++−= nCnDnSnCnDnwnCnDnSH iiiiiiiiiiC  

 
)(~)())((~ nDnDnDe −= and )(~)())((~ nCnCnCe −= are the a priori estimate errors                                       (4.26) 

 
]))((~))((~[)(~ T

D nDenDeEnP = and ]))((~))((~[)(~ T
C nCenCeEnP =                                                               (4.27) 

are the a priori estimate error covariances, 
)(ˆ)())((ˆ nDnDnDe −= and )(ˆ)())((ˆ nCnCnCe −= are the a posteriori prediction errors                               (4.28) 

 
]))((ˆ))((ˆ[)(ˆ T

D nDenDeEnP = and ]))((ˆ))((ˆ[)(ˆ T
C nCenCeEnP =                                                                 (4.29) 

are the a posteriori estimate error covariances, 
 
The a posteriori estimates are related to the a priori estimates by the Kalman gain, 

))(~)()(()(~)(ˆ nynynKnDnD TTD −+=                                                                                                               (4.30) 

          ))())(~)(()(()(~ nvnDnDHnKnD DDD +−+=  where )(nKD is the Kalman gain 
 

))(~)()(()(~)(ˆ nynynKnCnC TTC −+=                                                                                                                (4.31) 

          ))())(~)(()(()(~ nvnCnCHnKnC CCC +−+= where )(nKC is the Kalman gain 
 
The KFUE (Kalman Filter Update Equations) are stated below,                                                                     (4.32) 
 

)1()1(ˆ)(~
11 −+Λ−Λ= nQnPnP D
T

DDDD  is the update for )(nD a priori estimate error covariance, 

)1()1(ˆ)(~
11 −+Λ−Λ= nQnPnP C
T

CCCC is the update for )(nC  a priori estimate error covariance, 
1)]()()(~)([)()(~)( −+= nRnHnPnHnHnPnK D

T
DDD

T
DDD  is the filter gain for )(nD , 

1)]()()(~)([)()(~)( −+= nRnHnPnHnHnPnK C
T
CCC

T
CCC  is the filter gain for )(nC , 

))(~)()(()(~)(ˆ nynynKnDnD TTD −+=  is the a posteriori estimate for )(nD ,  
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))(~)()(()(~)(ˆ nynynKnCnC TTC −+=  is the a posteriori estimate for )(nC , 

)(~)]()(1[)(ˆ nPnHnKnP DDDD −=  is the update for )(nD a posteriori estimate error covariance, 

)(~)]()(1[)(ˆ nPnHnKnP CCCC −=  is the update for )(nC a posteriori estimate error covariance, 
 
In order to calculate the covariances )1( −nQD and ),1( −nQC  we can us the estimates 

))(ˆ)(ˆ()(~)(ˆ)(ˆ 1 knDknDknDknDknw DD −−−Λ−−−−=− , k = 1, 2,…                                                   (4.33) 

))(ˆ)(ˆ()(ˆ)(ˆ)(ˆ 1 knCknCknCknCknw CC −−−Λ−−−−=− , k = 1, 2,… 
 
In order to calculate the variances )(nRD and )(nRC ,we can us the estimates 

))(~)(ˆ()(~)()(ˆ knDknDHknyknyknv DTTD −−−−−−−=− , k = 1, 2, …                                                 (4.34) 

))(~)(ˆ()(~)()(ˆ knCknCHknyknyknv CTTC −−−−−−−=− , k = 1, 2, … 
The 1DΛ , 2DΛ , 1CΛ  and 2CΛ  matrixes which are used for the a priori estimates of )(nD and )(nC are usually diagonal 
and are updated in order to minimize the mean square error between the a priori and a posteriori estimates of 

)(nD and )(nC . 
 
By using the a posteriori estimates )(ˆ kD and )(ˆ kC , the weighted array estimates become 

( ) ( ))(ˆ)(ˆ)(.)(ˆ)(ˆ)(1)(ˆ ,,

1

,,,, nCnDnwnCnDnSny QIiQIiiQIiQIiQIiQIi +⎟
⎠
⎞⎜

⎝
⎛ ++=

−
                                                   (4.35) 

The pre weighted array estimates are given by 
 

)()(ˆ)(ˆ)(ˆ ,,,, nSnCnDnx QIiQIiQIiQIi ++=                                                                                                            (4.36) 
 
The fraction of un-weighted array element signal which is amplified by the weights is given by  

1
,,,, ))(ˆ)(ˆ(.)(ˆ)(ˆ −+= nCnDnDn QIiQIiQIiQIiα                                                                                                         (4.37) 

 
3- Improved Controlling Parameter Estimation (including additive signal modulation phase) 
 
A better estimate for the gradient of the quality measure with respect to the injecting signals )(tSi controlling 

parameter QIi ,ϑ belonging to iϑ
r

is expressed below, 
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Similarly, a better estimate for the gradient of the quality measure with respect to the array weight is expressed below, 
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where the assumption regarding the Pareto optimality between the gradient with respect to the in phase and the 
quadrature components still holds. 
 
For the modulated format of the additive signal ),,( iii tS ξϑ

rr
,the gradient of the quality measure with respect to the 

injecting signal controlling modulation parameter such as the modulation phase ),( nSiθ  belonging to the vector iξ
r

is  
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approximated by the following expression: 
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where the controlling modulation phase ),( nS iθ is used for the additive signal modulation format such as    

))(sin()())(cos()()( icQiicIii StwtSStwtStS θθ +−+=                                                                                   (4.41) 

       ]
)(
)(

arctan)(cos[)]()([ 2/122

tS
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StwtStS
Ii

Qi
icQiIi +++= θ  
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nSnSnS
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iii θ

θηθθ
Δ

Δ
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                 ( )TnSBnSnSnSBnS iiAnniAnniiAnn Δ−Δ′+Δ+ )),(()),(()),((5.0)),(()).,(( 2 θθσθσθθσ  
 
where )),(( nSiAnn θσ is the stochastic annealing coefficient, the Brownian increment [42]. 

))1,(()),(()),(( −−=Δ nSBnSBnSB iii θθθ , )),(( nSB iθ is a Brownian motion white Gaussian noise generator 
with unit variance, and )),(( nSiAnn θσ ′ is the annealing coefficient discrete derivative with respect to time increment 

TΔ between samples. Modulo π2  operations are performed after each phase update. 
 
The gradient method for the weight updates is easier to implement than the adaptive array method. However,  if it is 
desired to use the adaptive array method for optimizing the weights iw  [14-15] during the periods that the desired 
signal estimates are available, the pre weighted array estimates )(ˆ , nx QIi , i = 1 to M have to be replaced by effective 
pre weighted estimates, 
 

)(ˆ])())(ˆ1()(ˆ[)(ˆ ,,,, nxnwnnnx QIiiQIiQIiQIEffi αα −+= and by defining the vectors,                                       (4.43) 

)](ˆ,...),(ˆ),(ˆ[ ,,2,1, nxnxnxX QIEffMQIEffQIEffQIEff =  with covariance matrix EffXXR ,  

]1,...,1,1)[(ˆ ,, nsd QIDQI = with M elements 

where )(ˆ , ns QID could be the estimated desired signal, the intrinsic identifying signal coding / transformation or the 
reference / wireless network identification sequences.  
 
The minimum mean square error version of the weights is given by the following expression,    
[ ] =MMSEM nwnwnw )(),...,(),( 21

1. −
EffXXEff RdX  ,                                                                                             (4.44) 

 
Whereas, the MSINR (Maximum Signal to Interface and Noise Ratio) version of the weights becomes   

[ ] 1
21 .)(),...,(),( −

+= NIEffMSINRM RdXnwnwnw , where ( ) ( )dXdXdXdXR EffEffEffNI .. −−=+                 (4.45) 
 
Note that complex conjugate expressions are not used because the weights )(twi are usually not separated into I (in 
phase) and Q (quadrature) components. As mentioned before, the ultra weak signal condition does not provide 
favourable means for implementing in phase and quadrature components before the array output. Therefore, multiple 
optimization procedures may have to be employed in order to optimize the weights )(twi with respect to separate I and 
Q calculations.    
 
Now, we will examine the nature of the injecting signals )(tSi . The injecting signals are usually created by random 
number generators and also, the independence of the M injecting signals is a critical factor for the performance of the 
ASRA. Fortunately, the independence of the injecting signals is satisfied to a large extend by using stochastic 
annealing for the additive function parameter update.  
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In some implementations, the injecting signals )(, nS QIi are not created by random number generators and simpler 

methods are used. For example, the base band signal )(, nS QIi can be generated by using the data from the previous 

operation cycles and the required variance. When the probability distribution controlling variance ),( ,
2

, nS QIiQIiσ  is 
updated, then by using the weighted Kernel method with K sampling points,   
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where the smoothing parameter 5/12 )1).((06.1 −+= KSh iS σ and π2/)2/()( 2xExpxKern −=  is the Gaussian 
Kernel, one can solve for )(, nS QIi . Another simpler method is to use the equal weight variance estimation on the K+1 
samples, 

)1())1,(),()(1()( 2
,,

2
,,

2
,

2
, −−+−−+= KnSnSnSKnS QIiQIiQIiQIiQIiQIi σσ                                                       (4.47) 

 
The sign of the signal is determined by examining the data from the previous operation cycles and the number of 
required zero crossings per time period T [38], 
 { }0)(|)(.)0)()((.)( ,,,,0 =′== tStSEtSattSpTtn QIiQIiQIiQIi  , where ))(( , tSp QIi is the p.d.f.                    (4.48) 

 
D. ASRA Performance 
 
Let 222 )()( Niii SAtS σ= , where )(2

,
2 tN QIN =σ is the preamplifier input noise variance and 1)(2 ≥ii SA . In fact, 

we are not able to generate and attenuate injecting signals )(tSi , I = 1 to M to levels below the noise floor. 

Also, let the desired signal power 2222 )()( NDSDD SAhtS σ== , where 1)(2 <DSA  (ultra weak signal condition), 

and the sum of the interfering signal power 2222 )()( NINININ SAhtS σ== . As mentioned before, )(MAi is the 
received signal )(, tS QIR attenuation due to the creation of M arrays. 
 

)(.)())(),(()().( 22 tStStStStStS iDiDiiD ρ=                                                                                                     (4.49) 

                  2)()())(),(( NDiiiDi SASAtStS σρ=  
where the correlation coefficient range reduces to 1))(),((0 << tStS iDρ  during acquisition and normal 
operation. Recall that the received signal is given by 
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The pre weighted signal component power becomes 
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, )()()().()( tNtStSMAtx QIiQIiQIRiQIi ++=                                                                                              (4.50) 
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Using the following approximation for the weighted sum, 
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         )()()),(),(()(2)()( 22
DiavgjDavgavgDavg SASAMtStSMASAMA ρ+≈  

 
)(MAavg is the average signal attenuation due to the creation of M conduction paths or array elements. 
)( iavg SA is the average additive signal level in terms of multiples of noise level and )( DSA is the desired 

signal level in terms of fractions of the noise level. The first term is less than 1 and it can be ignored. 
)),(),(( MtStS jDavgρ , which is the average correlation coefficient between the desired and additive signals 

is dependent on the possible variations of the desired signal, the array size M, and the interdependence of 
)(tS j  (j = 1 to M) functions, and it increases as M becomes larger. The variations of the desired signal are 

dependent on the transmission and modulation schemes.  
 
The condition for signal detection is 1)()()),(),(()(2 ≥DiavgjDavgavg SASAMtStSMA ρ .                        (4.53) 
 
Due to the interdependence of additive signals, for M>1  

)1),(),((.)),(),(( tStSMMtStS jDavgjDavg ρρ ≤                                                                                                (4.54) 
                                   )1),(),((.)],),(),((1[ tStSMjiMtStS jDavgjiavg ρρ ≠−=  
where ),),(),(( jiMtStS jiavg ≠ρ is the average dependency of an additive signal with respect to the other     
M-1 additive signals, subject to the following condition, 
 

MjiMtStSMjiMtStS jiavgjiavg )],),(),((1[)1)](,1),(),((1[ ≠−≥+≠+− ρρ ,                                        (4.55) 
where the equality only occurs at maxM .  
 
Similarly, the expression for Signal to Interference and Noise Ratio becomes 
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                          (4.56) 

 
Note that even though SINR is typically less than 1, the source separation module is able to extract the 
desired signal because SNR is slightly above 1. In spite of the advantages of processing the delayed 
contributions of the desired signal, the respective ISI terms have not been included in both the SNR and 
SINR analysis for simplicity.  
 
V- Adaptive Transport Array (ATA) Preamplifier 
 
Unlike the Adaptive Stochastic Resonance Array, the ATA method is a recent addition to the ultra weak signal pre 
amplifier technology. At this primitive stage, the ATA method can not be practically implemented in the compact 
wireless set and it requires further research for optimizing and reducing the number of arrays.  
 
This section is basically an introduction to the preamplifier concept and in order to simplify the calculations, we have 
made the wild assumption that the aggregated sum of the received channel conditioned desired and interfered signal 
components does not contain any white noise component. The excess noise due to the received signal components  
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will be considered in subsequent papers.    
 
A. ATA Architecture 
 
For the Ultra weak power condition, where the desired signal portion of the received signal has an average power 
below the noise power, we like to capture or emphasise the time periods that the instantaneous or short term noise 
power is smaller than or equal to the instantaneous received signal power in spite of the fact that the average noise 
power is greater the average signal power (see Appendix I). In the primary conduction path at the output of the nano 
antenna or nano cavity modules, if the ultra-weak signal condition still exists, the mentioned criteria only occurs for 
short periods of time.   
 
However, if we have enough duplicates of the primary conduction path, then we can claim that most likely at any time 
instance, at least one of the duplicates will have a lower or equal instantaneous noise power with respect to the desired 
signal power. By emphasising or placing more weight on the special conduction path duplicate(s) that meet the 
mentioned requirement at each update period, we have effectively captured the higher signal to noise power signal for 
all time periods. 
 
Therefore, an array is required and the conduction path segment )(tSR from the output of each antenna or the nano-
cavity port is divided into M equal size transport paths )(tSRi , i=1 to M having the following base band format: 
 

)sin)(cos)()(()( iRQiRIiIRi tStSMAtS θθ −= ,                                                                                                  (5.1) 

)cos)(sin)()(()( iRQiRIiQRi tStSMAtS θθ +=  for i=1 to M 

The terms )(MAi and iθ are respectively, the attenuation and the phase shift angle for each transport path due to the 
path division. )(MAi decreases as M increases and the phase shift is usually neglected up to the microwave range, but 
it may be considered for the millimeter wave bands. The mentioned terms can be determined from the geometry of the 
transport path division during actual implementation.  
 

( ))(),()()( tStSfMAtS IINIDMIXiIRi =                                                                                                                  (5.2) 

             )(tIiμ=  with )()( tZt iIiIσ as the corresponding noise 

( ))(),()()( tStSfMAtS QINQDMIXiQRi =  

             )(tQiμ= with )()( tZt iQiQσ as the corresponding noise 

where )(tZiI and )(tZiQ are typically Gaussian white noise with unit variance. 
 
The ultra weak signal condition of the transport paths does not allow for the creation of separate in-phase and 
quadrature components of the transport paths. The measurement access point is the output of the preamplifier. 
Therefore, separate I & Q calculations or measurements will be made and multiple optimizations will be employed. 
TheI & Q notations will be emitted for simplicity and the terminology )()( ttS iRi μ=  with noise component 

)()( tZt iiσ shall be used. 

For each transport path, the terms )(2 tiσ and )(2 tiμ  represent the short term or instantaneous noise and signal powers, 
respectively. Each transport path with signal )(tSRi will be multiplied by the emphasis or weight factor )(twi for 

 i = 1 to M at each update period. The weighted transport paths become )(tyi for i = 1 to M and the array output 

becomes ∑
=

=
M

j
jT tyty

1
)()( + measurement noise. The ATA output signal )(tyT becomes the detectable signal and 

therefore, it can be subjected to conventional signal processing. The multiplication shall be performed by a semi-
ballistic nanostructure Gilbert cell such as nano FET Gilbert cell transistors with the minimal amount of field (voltage) 
to transport (current) translations. [18,19]  
  
It is interesting to note that individual weighted transport paths can not be tapped for conventional processing, because 
the desired signal )()( , tsth QDISD average power is below the average noise level and the only access point is the 
output of the array. 

                                                                                          -17-        
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
B. ATA Number of Required Paths 
 
Before, concentrating on the weight assignment and the multiplication process, it is necessary to consider the number 
of required paths M for the ATA method. Assuming equal attenuation due to array creation )(MAA i=  and by 

examining the instantaneous signal power )(2 niμ and noise power )(2 niσ during cycle n operation for paths i =1 to M, 
we note that the noise power is dependent on the path, but the overall signal power is approximately the same for all 
paths. Therefore, generally )()( 22 nni μμ = and ignoring the cross correlation terms, 

)()( 222 tfAn MIX≈μ  
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K
KSD hkTRhhhhA                                                                                    (5.3) 

where short term expectation (covering cycle n operation) is applied over the mixed signal power. The power ratio for 

                                                                                          -18-        

Nano 
Cavity 

)(tSR  

)(tSRi  

)(twi  )(1 tw  )(twM  

)(1 tSR  )(tSRM  

)(tyi  

)(tyM  
)(1 ty  

o o o  o o o  

)(tyT  

ATA Pre Amplifier 

Fig. 3- Adaptive Transport Array 

   Nano Antenna Port  
 

       Side 
Demodulator/   
   Sampler 

 
Array Weights Adjustment 

  Optional Analog Source Separation     
     Module (Adaptive Array, Analog     
                    Filter, etc.) 

   Demodulator & Sampling Stages 

o o o  

LNA

Digital Signal Source Separation /  
  Interference Reduction Module 

)(ˆ nsD  

)(nyT  

              
        Other Post Sampling Modules 

Signal Quality 

o o o  



the desired and total received power is denoted by 
)(2

2
2

/
tf

h

MIX

SD
MIXD =α  

In order to detect the desired signal, the following condition should be met for instantaneous noise and signal powers, 

)(22 nh iSD σ≥  or )(
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/ n

MA
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i
iMIXD σ
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≥                                                                                                                (5.4) 

where 2
/ MIXDα  is the power ratio between the desired and total received power. Recall that the ultra weak signal 

condition )(
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iMIXD σ
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< for the average noise power. 
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In order to meet the instantaneous power requirement for at least one array component at any time, we impose the 
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where the equivalent normal distribution estimation of the Beta distribution has been used and 

( )2222 )()())(( tttDev iii σσσ −=  

For M=100,      ))((265.1
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C. ATA Weight Assignment 
 
For the weighted path, the sampled transport path )(nSRi is multiplied by the weight )(nwi  

)()()(),,()()(),,()( nZnnwwfnnwwfny iiiiiiiii σσμμσμ σμ +=  for i= 1 to M                                           (5.6) 

         )()()( nZnn iLiLi σμ += , where 1),,(/1 << iii wfw σμμ  and  1),,( ≈ii wf σμσ  

The multiplication reduction factor ),,( ii wf σμμ is dependent on the ratio 2

2

iσ
μ

, the strength of different signal 

components and the short term correlations of the signal components. Signal components can not be multiplied by iw  

if their power levels are below 2
iσ . Even if the mentioned signals are aligned at certain time periods with power levels 

above 2
iσ , the aligned portions will be subject to multiplication by iw without retaining the integrity of the individual 

signal components. Therefore, the desired signal will be multiplied by 1 instead of iw  at the output of the multiplier if 

its power level is below 2
iσ . 

 
As mentioned before, the individual weighted paths are not accessible and our access point is the array output 

∑
=

=
M

j
jT nyny

1
)()( + measurement error. Moreover, we are dealing with ultra low signal powers. Therefore, the 

Adaptive Array methods for optimizing the weights iw  [14-15] are not directly applicable. In order to use the method 
for weight assignment, a vector X will be defined as the input to the array, 
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[ ]MMMMIXMIXMIX ZfnAfZfnAfZfnAfX σσσ μμμ +++= )(...,,)(,)( 222111   

where the effects of the multiplication reduction factors are included. Let ]1,,...1)[(ˆ nSd D= as the desired signal 
estimate vector. The covariance matrix for the vector X becomes 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠

⎞
⎜
⎝

⎛
+++≈ ∑

−

=

2
1

2
2
212

121
2
1

2
,

1

1

222

...
.....
.....

..

..

)](2[

MM

M

M

INSDSDSDK

Lc

K
KSDXX

fff

fffff
fffff

hkTRhhhhAR

μμμ

μμμμμ

μμμμμ

                             (5.7) 

           

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

2

2
2

2
2

2
1

.000
.....
0.00
0.00
0.00

Mσ

σ
σ

σ

 

 
The minimum mean square error (MMSE) version of the weight vector becomes 

[ ]MMSEMMMSE nwnwnwnw )(),...,(),()( 21=  

                 1. −= XXRdX  
 
The MSINR (Maximum Signal to Interface and Noise Ratio) version of the weight vector becomes   

[ ]MSINRMMSINR nwnwnwnw )(),...,(),()( 21=  

                 1. −
+= NIRdX  and  

 

( ) ( )dXdXdXdXR NI .. −−=+                                                                                                                         (5.8) 
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As mentioned before, the desired signal can only be amplified if the noise power becomes lower than the desired 
signal power and due to the limitations on the array size, only one path will most likely satisfy the mentioned low 
noise power requirement. Moreover, due to the instantaneous noise fluctuations, we have to predict the path 
instantaneous noise power for the next update period in order to assign the weights. Therefore, the Adaptive Array 
method does not seem to be practical for the ATA preamplifier and another policy is required.  
 

Let SDw  be the minimum weight that is required for the paths that satisfy the )(
)(

)( 2
2

22
/ n

MA
n

i
iMIXD σ

μα
≥ requirement. A 

good policy would be to assign the weight SDi ww > for transport paths which satisfy the )(
)(

)( 2
2

22
/ n

MA
n

i
iMIXD σ

μα
≥  

requirement for the next update period and to assign 1=iw  for other cases. Note that if we set 1>iw  for cases where 
the noise power is larger than the desired signal power, the signal component would not be amplified, but the noise 
component will be amplified. In order to estimate SDw , we assume that only one of the paths satisfies the above signal 
requirement and M-1 paths are multiplied by 1.  
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The desired signal portion of the array output is equated to the output array noise and the result becomes: 
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The following issues have to be considered for the weight assignment:  
 
1- During an update period, the noise and signal powers for each path have to be predicted for the next update period.   
      
2- The desired signal power is not know, especially at the start of the tracking mode.  
 
The path instantaneous signal and noise powers have to be predicted for the next update period in order to assign the 
weights.  Due to the use of semi-ballistic nano structures, it can be shown that the for any level of signal power, the 
noise statistics are basically pseudo random sequences which can be retrieved by pseudo random noise generating 
state machine (see Appendix I). There are various means of collecting statistics for building the state machine. The 
array output is fully accessible and its instantaneous signal and noise powers can be calculated by methods of 
stochastic calculus.  
 
At the start of the tracking phase, by setting the weight for one of the paths to a low value of 1>w and the rest of the 
weights to 1 and retaining the weight assignment for many cycles, eventually the output signal power is maximized. In 
effect, we are simultaneously assuming a large power threshold )()(22

/ MAniMIXD μα  for detecting the desired signal. 
If a minimum level of desired signal quality (metric) is not detected by the post sampling modules, then the threshold 
is lowered by increasing the weight for the particular path until the desired signal is detected.  
 
By repeating this procedure for other paths, the statistics of instantaneous noise power )(2 tiσ will be approximated for 

the different cases of )()( 22 nni μμ ≈  signal powers. The Ultra weak signal channel environment is inherently time 
invariant, therefore the pseudo random noise state model has to incorporate the different signal power 
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conditions. Also, by performing other permutations such as setting 2 or more of the weights jw  to common 

values above 1, the approximate multiplication reduction factors ),,( ii wf σμμ can be retrieved as a function of 2

2

iσ
μ

.   

 
The assignment of SDi ww ≥ for transport paths which satisfy the desired signal power threshold and the assignment  

of 1=iw  for other cases is optimum only if 2

2

iσ
μ

 is predicted exactly. As indicated in the next section, the weights for 

the operating cycle n will be assigned during n-1 operating cycle by using the a priori estimates )(~2 niσ  and )(~2 niμ . 

During n-1 operating cycle, a priori estimates )1(~2 −niσ , )1(~2 −niμ  and a posteriori estimates )1(ˆ 2 −niσ  and  

)1(ˆ 2 −niμ are also available. Therefore, the following policy for the weight assignment can be used: 
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3- Assign the weight 1=iw  for paths that satisfy the condition ))](),((1[
)(

)(~
)(~ 22

2

22
/2 nn

MA
n

n ii
iMIXD

i μσγ
μα

σ +≥  

 
D. Transport Path Base-band Signal Estimation & ATA Cycle Operations  
 
The instantaneous signal and noise powers can be estimated by using the array output measurement and the method of 
stochastic calculus. The stochastic differential expressions for the transport paths, weighted transport paths i (i = 1 to 
M) and array output become 
 

)()()()()()( tdBtdttdttZtdttS iiiiiRi σμσ +=+                                                                                                (5.11) 
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j
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The termsμ and 2σ  are the drift (instantaneous mean) and diffusion (instantaneous variance) for the respective 

stochastic process. The term )(tdBi is the brown motion or Wiener process with variance dttBd i =)(2 . The drift and 
diffusion coefficients can be estimated by the work of Ait-Sahalia, Jiang, Knight, Stanton, Chapman and Pearson and 
the relevant procedures are outlined in Ref. [39-41]. 
 
If the sampled base band version of the weighted path )(tyi , i.e. )(nyi were available, then by using numerical 

Integration methods such as Trapezoid Law ( ) )2()1()(5.0)( −−+−−+−Δ=− jnLjnyjnyTjnL wiiiwi , the 

drift and diffusion parameters )(nLiμ and )(2 nLiσ  of the weighted paths could have been estimated by the following 
kernel weighted equations:   
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where K+1 sampling points have been considered . The smoothing parameter 5/1)1).(var(06.1 −+= KLh wiS  and the 

π2/)2/()( 2xExpxKern −=  is the Gaussian Kernel. By knowing the drift and diffusion coefficients of the 
weighted paths and the weights )(nwi , the instantaneous noise variance of the paths )(2 niσ and the effective 

instantaneous path signal power ( )2)(. nf ii
μμ  could be retrieved. After the measurement of array output, a posteriori 

estimates of the weighted transport paths shall be used for the mentioned drift and diffusion calculations. 
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The Milstein method [34] for estimating )(nLwi (or )(nyi ) from )1( −nLwi  (or )1( −nyi ) is indicated below: 

( )TnBnnnBnTnnLnL iLiLiiLiLiwiwi Δ−−Δ′+−Δ+Δ+−= )1()()(5.0)1().()()1()( 2σσσμ                          (5.13) 

             )1().()()()(.)1( −Δ+Δ+−= nBnnwTnnwfnL iLiiiiiwi σμμ    

                 ( )TnBnnwnnwnnw iiiiiii Δ−−Δ′+′+ )1())()()()()(()(5.0 2σσσ  

The Brownian increments )1( −Δ nBi are nearly independent with variance TBi Δ=Δ 2)(  
During the (n-1) period, the a priori estimates for the next period (n) which include the drift )(~ niμ , the 

diffusion )(~ 2 niσ , the Brownian increment )1(~ −Δ nBi , and the multiplication reduction factor
i

fμ
~

can be determined 

by using either simple predictors at the start of the operation or by using the pseudo random noise Markovian state 
models [43-44] (see Appendix I). The weights )(nwi are also assigned at this stage. 
 
The method for estimating the base band signals of the transport paths by measuring the array output is presented here. 

After making the measurement from the output of the array )(nyT  or equivalently )(nLT due to 
dt

tdL
ty T

T

)(
)( = , the 

a posteriori estimates for the above terms can be determined. For this purpose, the Kalman filtering method [37] will 
be used. 
 
For the Kalman state equation, we regroup )(nLwi , as follows  

)1()1()1()( −+−+−= nenunLnL iiwiwi for i =1 to M                                                                                    (5.14) 

Where )(nLwi and )1( −nLwi are the current and previous Kalman process states, respectively. The term )1( −nui is 

the driving function and )1( −nei is the process noise with variance )1()( 2 −= nenQ ii  . 
 

+−Δ+Δ=− )1(~).(~)()(~)(.~)1( nBnnwTnnwfnu iiiiiii σμμ                                                                                (5.15)               

                  ( )TnBnnwnnwnnw iiiiiii Δ−−Δ′+′+ )1(~))(~)()(~)()((~)(5.0 2σσσ  
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For the Kalman measurement equation, the array output will be used, as follows: 

)()()(
1

nvnLnL L

M

j
wjT += ∑

=

 where )(nvL is the zero mean measurement noise with variance )()( 2 nvnR L=  

By using the a posteriori estimates )1(ˆ −nLwi of the (n-1) cycle, we obtain the following a priori estimates (or state 
project): 

)1()1(ˆ)(~ −+−= nunLnL iwiwi for i = 1 to M,                                                                                                     (5.16) 

)(~)(~ nLnLe wiwii −=  is the a priori estimate error with variance )(~)(~ 2 nenP ii =  

)(ˆ)(ˆ nLnLe wiwii −=  is the a posteriori estimate error with variance )(ˆ)(ˆ 2 nenP ii =  

The index n in the variance expressions )(nQi , )(nR , )(~ nPi and )(ˆ nPi implies that the variance estimates were 
obtained by using all of the available data up to the nth period. 
 

)1()1(ˆ)(~ −+−= nQnPnP iii is the error variance projection                                                                                (5.17) 
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i  is the Kalman gain 
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After receiving the demodulated and sampled output of the array )(nYT (or equivalently )(nLT ), the a posteriori 

estimates of the weighted path )(ˆ nLwi become 

∑
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−+=
M

j
wjTiwiwi nLnLnKnLnL

1
))(~)()(()(~)(ˆ , i = 1 to M                                                                                  (5.18) 
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)(~))(1()(ˆ nPnKnP iii −= for the updated variance of the a posteriori estimate error of the weighted paths.  
 
By the knowledge of a posteriori weighted path estimates )(ˆ nLwi , the estimated drift )(ˆ nLiμ and diffusion )(ˆ 2 nLiσ can 

be determined by the weighted kernel method of equation 5.12. Since the weights )(nwi are known, the a posteriori 

estimates for drift )(ˆ niμ  and the product of drift and the multiplication factor )(ˆˆ nf ii
μμ can be easily determined by 

simple division of )(ˆ nLiμ and )(ˆ niσ by the weights )(nwi . 
 
Then, the process noise estimates can be retrieved by the difference between the a priori and a posteriori weighted path 
estimates. 

)(~)(ˆ)1(ˆ nLnLne wiwii −=− , which can be used to update the process noise variance )(nQi .                           (5.19) 
 
The a posteriori estimates of the Brownian increments )1(ˆ −Δ nBi can be retrieved by using the process noise 
estimates in quadratic format, as follows: 
 

)]1(~).(~)1(ˆ).(ˆ)[()](~)(.~)(ˆ)(.ˆ[)1(ˆ −Δ−−Δ+Δ−=− nBnnBnnwTnnwftnwfne iiiiiiiiiiii σσμμ μμ                  (5.20) 

( )TnBnnwnnwnnw iiiiiii Δ−−Δ′+′+ )1(ˆ))(ˆ)()(ˆ)()((ˆ)(5.0 2σσσ

( )TnBnnwnnwnnw iiiiiii Δ−−Δ′+′− )1(~))(~)()(~)()((~)(5.0 2σσσ  
 
The mentioned a posteriori estimates and the a priori estimates will be used to update the drift and diffusion predictors 
and the pseudo noise state model. The latest estimate of the measurement noise )(ˆ nvL becomes: 

∑
=

−=
M

j
wjTL nLnLnv

1
)(ˆ)()(ˆ                                                                                                                                     (5.21) 

The measurement variance )(nR of the array output will be updated by using the measurement noise estimate at the nth 
cycle. The block diagram for ATA weight adjustment and update process is shown in Fig 4. 
    
                                                               VI- CONCLUSION 
 
Ultra weak signal processing is required for recovering communication signals that have power levels below the noise 
floor of the receiver. The concepts can be used for recovering the ultra weak signals for both wireless and wired 
media. The signal processing is fundamental in implementing the long awaited Source Separation technology in the 
receiver modules for the sake of increasing the user capacity. It also facilitates the deployment of wireless sensors and 
actuators for many applications including remote operations. It is interesting to note that the ultra weak preamplifiers 
do not require extra bandwidth or transmission protocol modifications for their operation. 
 
Currently, the Adaptive Stochastic Resonance Array (ASRA) is the most flexible technology for implementing the 
ultra weak wireless preamplifier module. The preamplifier does not require the internal signal dynamics for its 
operation. The array has been successfully implemented for the base band version as Supra-threshold Stochastic 
Resonance [16, 17] and its infrastructure is well known. The structure for the additive signals which is dependent on 
the transmission protocol can be improved as better algorithms become available. In fact, if programmable module is 
used for the preamplifier section, the algorithm modifications for the additive signals, quality measurement and the 
adaptive parameter updates can be loaded for improved performance. The excess interference due to the additive 
signals can be readily eliminated in the source separation module because the additive signals and their contribution 
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to the array output are known. 
 
The ultra weak signal processing provides a dynamic jump in the market for massive communication services. 
Moreover, by resolving the signal detection and radio frequency power overloads, there will be a huge market for the 
inclusion of wireless modules in almost all of the electronic and electromechanical equipment. Also, the remote 
operation facility provided by the signal processing leads to dynamic improvements in production, management, 
service offerings, diversified remote inspections, self employment and other areas which lead to economic growth.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix I- Electronic Transport Mechanism 
 
Boltzmann transport equation [45-48] is used for examining the receiver transport and noise mechanism due to its 
simple structure. However, for the instantaneous noise power analysis and its pseudo randomness, a simpler method 
that is based on stochastic calculus will be employed. 
 

)(1)( kkv
dt
xd

k

r

h

rr
r

ε∇=≡ ,                                                                                                                                         (I.1) 

where xr is the electron position, vr  is the electron drift velocity, k
r

is the wave vector, )(k
r

ε is the energy vector, 
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During the (n-1) operation cycle, calculate the (n) cycle path a priori estimates for drift )(~ niμ ,  

diffusion )(~ niσ , Brownian increment )1(~ −Δ nBi and multiplication reduction factor
i

fμ
~

by 

using the (n-1) cycle posteriori estimates, simple predictors, random noise observable 
Markovian state machine, paths i=1 to M 

During the (n-1) operation cycle, estimate the Kalman Filter driving function )1( −nui , the 

path weights )(nwi for the (n) operation cycle,  i = 1 to M 

During the (n-1) operation cycle, calculate the weighted paths a posteriori estimates 

)(~ nLwi for the nth cycle by using the driving function and the a posteriori estimates  

)1(ˆ −nLwi   

During the (n) operation cycle, by using the output of the array, calculate the Kalman filter gain 

and the a posteriori estimates )(ˆ nLwi for the weighted paths and update the Kalman filter 

parameters 

By using the a posteriori estimates )(ˆ nLwi for the weighted paths, the (n) cycle a posteriori 

weighted paths drift )(ˆ nLiμ  and diffusion )(ˆ 2 nLiσ terms can be determined by the methods of 
stochastic calculus, such as the weighted Gaussian kernel method 

Estimate the (n) cycle a posteriori drift )(ˆ niμ , diffusion )(ˆ 2 niσ , multiplication factor 
i

f μ̂ , and 

the Brownian increments )1(ˆ −Δ nBi for paths  i = 1 to M , update the array output 

measurement noise )(nR and weighted path estimate error )(nQi statistics, and update the 

pseudo noise Markovian state machine 

Fig. 4- Adaptive Transport Array Update Process 



where the internal field ),( txInt
rr

Ε is generated by internal forces and density profiles   
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where ρ
r

 is the momentum, EffΕ
r

 is the effective electric field, rF
r

 is the random impulse force on electron due to 
scattering and it is given by 
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where }{ rF
r

is the momentum driven drag force and 0
rF
r

is the zero mean fluctuating force.  
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where tB is a zero mean Wiener process, )(2
rF
r

σ  is the variance of the random scattering force on the electron, 

)(k
r

λ is the scattering rate for the electron wave vector )(k
r

, and ),( kkW
rr
′ is the transition rate satisfying 
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Therefore,  
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λ is the probability that a jump in momentum will occur in a small time interval tΔ and if a scattering event has 

occurred at time it , )( −= ii tkk
rr

 and )( +=+ iii tkuk
rrr

, then the probability distribution function for the amplitude of 

the jump would be
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Note that for a conduction path, there is a correspondence between the scatterings and a Markovian state transition 
probability model. The momentum jumps in a given time frame indicate transitions into new states. For semi-ballistic 
transport, the number of Markovian states is limited, because the scattering rate is lower with respect to non-ballistic 
transport and depending on the relaxation time period, there is a tendency for electron distribution to return to 
equilibrium. 
 
Even though there is a weak dependency between the signal power and the noise power transitions, it is customary to 
model one state machine for a range of average signal power to noise power ratio. Let },...,,{: 21 LSpSpSpq  be the L 
Markovian states for a noise analysis of a simple transport path for a known range of signal to noise power ratio and 
let )}(,...),(),({ 22

2
2

1 NVNN σασασα  be the V possible noise power symbols which are normalized with respect to the 

average noise power 2
Nσ .  

 
The Markovian state machine [43,44] is modelled by optimizing the observable symbol probability distributions, 

})(|)(Pr{)( 2
jkj Spnqnperiodtimeatkb == σα for j = 1 to L and k = 1 to V and the state transition distributions 

})(|)1(Pr{)( ijij SpnqSpnqka ==+= for i, j = 1 to L. In practice, the Markovian state machine is constructed by 
indirect noise power measurement during each measurement sampling period. Therefore, the Markovian transitions 
are modelled discretely with the same time frame as the measurement sampling period. If the measurement sampling 
period isΔΤ , the probability of electron scattering in time periodΔΤ  is specified below, 
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The Boltzmann Transport Equation (BTE) is given by the expression, 
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where ),( kxf
rr

is the electron distribution function, q is the electronic charge and iiiijiij udukkWuuk rrrrrrr
),()( += ∫σ  

 
The current longitudinal noise auto covariance function can be retrieved as the transient solution of BTE, subject to 
the following special initial condition, 

),())((),,(
0
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rrrrrrr
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=
,                                                                                                          (I.9) 

where ),( kxf SS

rr
is the steady state solution of the electron distribution function and kdkxfkvv SSX

rrrrrr ),()(∫≡>< . 

Typically, the Fermi distribution is used for the steady state electron distribution,  
1]1/))([exp(),( −+−= TKkkxf BfSS με

rrr
, where BK  is the celebrated Boltzmann constant and T is the 

Temperature.  
 
The current noise auto covariance function becomes  

kdtkxfkvqtxK J
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ττ τ dexKwx jw
JJ ∫∝Φ ),(),( rr

 is the current density noise power spectral density with the average noise power of 

)0,(xJ
r

Φ .  

For ballistic transport, the average current noise power at room temperature is given by hTTqK TRB .8 2 , where TRT is 
the ballistic net transmission coefficient. For semi-ballistic transport, there is a partial contribution of the non-ballistic 

current noise power density of 
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B

μτ )1(
.4

22+
 where )0(1 22 λτ =f is the square of the average time between 

collisions (relaxation time), A is the cross sectional area of the conduction path, L is the length of the conduction path 

and eμ is the electron mobility. The average current noise power for non-ballistic transport path is  
Anq
LTK

e

B

μ
.4

 

 
For the instantaneous noise power analysis, the force equation is transformed into stochastic differential equation, 
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For the weak dependence of the noise velocity Nvr  on the external electric field ))(),((,( tStSfV INDMIXbiasExtΕ

r
and the 

mean fluctuation force, and the relatively strong dependence of the noise velocity to the internal electric field 
),( txInt

rr
Ε , the coefficients 1Nα , 2Nα and 3Nα  are used in the following approximation, 
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The instantaneous noise power )(2 tNσ in the transport path direction with noise velocity Nv  is approximated by the 
following expression, 

2222 )( NNN vnqCt ≈σ , where NC is a constant, q is electronic charge and n is the electronic density 
 
By using stochastic calculus, 

t
e

r

N

N

e

r

N

N
N

N

N
N dB

m
F

dv
d

dt
m

F
dv
d

v
dv
d

d ⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+≈

)(.)(5.0)(
2

2

2

2

222
2

rr
σσσσ

μ
σ

σ                                                                 (I.12) 

         tNNt
e

r
NN

e

r
NNNN dBdtdB

m
F

vnqCdt
m

F
nqCvvnqC )()(

)(
.2

)(
)(2 2222

2

2
2222 σςσμ

σσ
μ +=⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+≈

rr

 

                                                                                          -27-        



The pseudo randomness of the instantaneous noise power )(2 tNσ is evident from the drift contribution )( 2
Nσμ and the 

Markovian state machine can be constructed by limited states due to semi-ballistic transport and relatively lower 
variance of the random scattering )(2

rF
r

σ . 
 
The Markovian state machine parameters, i.e. observable symbol probability distributions, )(kb j  and the state 

transition distributions )(kaij are related to the time evolutionary Fokker Planck probability distribution ),( 2 tP Nσ , 
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The Milstein method [34] for estimating )(2 nNσ from )1(2 −nNσ  is expressed below: 

( )TnBnnnBnTnnn tNNtNNNN Δ−−Δ′+−Δ+Δ+−= )1(),(),(5.0)1().,(),()1()( 2222222 σςσςσςσμσσ          (I.14)                  
where the derivative is performed with respect to time.  
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